Continuous Finger Gesture Spotting and Recognition Based on Similarities Between Start and End Frames

定位 手势 计算机科学 手势识别 语音识别 人工智能 计算机视觉
作者
Gibran Benítez-García,Muhammad Haris,Yoshiyuki Tsuda,Norimichi Ukita
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (1): 296-307 被引量:11
标识
DOI:10.1109/tits.2020.3010306
摘要

Touchless in-car devices controlled by single and continuous finger gestures can provide comfort and safety on driving while manipulating secondary devices. Recognition of finger gestures is a challenging task due to (i) similarities between gesture and non-gesture frames, and (ii) the difficulty in identifying the temporal boundaries of continuous gestures. In addition, (iii) the intraclass variability of gestures' duration is a critical issue for recognizing finger gestures intended to control in-car devices. To address difficulties (i) and (ii), we propose a gesture spotting method where continuous gestures are segmented by detecting boundary frames and evaluating hand similarities between the start and end boundaries of each gesture. Subsequently, we introduce a gesture recognition based on a temporal normalization of features extracted from the set of spotted frames, which overcomes difficulty (iii). This normalization enables the representation of any gesture with the same limited number of features. We ensure real-time performance by proposing an approach based on compact deep neural networks. Moreover, we demonstrate the effectiveness of our proposal with a second approach based on hand-crafted features performing in real-time, even without GPU requirements. Furthermore, we present a realistic driving setup to capture a dataset of continuous finger gestures, which includes more than 2,800 instances on untrimmed videos covering safety driving requirements. With this dataset, our both approaches can run at 53 fps and 28 fps on GPU and CPU, respectively, around 13 fps faster than previous works, while achieving better performance (at least 5% higher mean tIoU).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大了个头完成签到 ,获得积分10
刚刚
Accepted完成签到,获得积分10
2秒前
fengzi完成签到 ,获得积分10
2秒前
鱼人完成签到,获得积分10
3秒前
Lynn发布了新的文献求助10
6秒前
自然完成签到,获得积分10
7秒前
谦让成协完成签到,获得积分10
10秒前
菜芽君完成签到,获得积分10
11秒前
路寻完成签到,获得积分10
12秒前
追逐的疯完成签到,获得积分10
12秒前
13秒前
诸葛烤鸭完成签到,获得积分10
13秒前
情怀应助pophoo采纳,获得10
14秒前
14秒前
17秒前
喵喵完成签到 ,获得积分10
18秒前
18秒前
味子橘完成签到 ,获得积分10
19秒前
gxh发布了新的文献求助10
19秒前
20秒前
立军发布了新的文献求助10
20秒前
andy发布了新的文献求助10
20秒前
song完成签到 ,获得积分10
20秒前
koukousang完成签到,获得积分10
21秒前
鲜艳的皮皮虾完成签到 ,获得积分10
23秒前
24秒前
笨笨忘幽发布了新的文献求助10
24秒前
Lazarus_x完成签到,获得积分10
25秒前
物质尽头完成签到 ,获得积分10
25秒前
独狼完成签到 ,获得积分10
28秒前
BettyNie完成签到 ,获得积分10
28秒前
燕聪聪发布了新的文献求助30
28秒前
电闪完成签到,获得积分10
29秒前
赘婿应助德州老农采纳,获得10
31秒前
甜甜甜完成签到 ,获得积分10
32秒前
KCl完成签到 ,获得积分10
34秒前
37秒前
学术老6完成签到 ,获得积分10
38秒前
38秒前
海带先生完成签到,获得积分10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10227030
捐赠科研通 3041612
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734