How far can we trust forestry estimates from low-density LiDAR acquisitions? The Cutfoot Sioux experimental forest (MN, USA) case study

森林资源清查 激光雷达 断面积 点云 遥感 激光扫描 树(集合论) 环境科学 随机森林 森林结构 地理 林业 计算机科学 森林经营 数学 激光器 考古 机器学习 数学分析 物理 光学 天蓬 计算机视觉
作者
E. Borgogno Mondino,Vanina Fissore,Michael J. Falkowski,Brian J. Palik
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:41 (12): 4551-4569 被引量:11
标识
DOI:10.1080/01431161.2020.1723173
摘要

Aerial discrete return LiDAR (Light Detection And Ranging) technology (ALS – Aerial Laser Scanner) is now widely used for forest characterization due to its high accuracy in measuring vertical and horizontal forest structure. Random and systematic errors can still occur and these affect the native point cloud, ultimately degrading ALS data accuracy, especially when adopting datasets that were not natively designed for forest applications. A detailed understanding of how uncertainty of ALS data could affect the accuracy of derivable forest metrics (e.g. tree height, stem diameter, basal area) is required, looking for eventual error biases that can be possibly modelled to improve final accuracy. In this work a low-density ALS dataset, originally acquired by the State of Minnesota (USA) for non-forestry related purposes (i.e. topographic mapping), was processed attempting to characterize forest inventory parameters for the Cutfoot Sioux Experimental Forest (north-central Minnesota, USA). Since accuracy of estimates strictly depends on the applied species-specific dendrometric models a first required step was to map tree species over the forest. A rough classification, aiming at separating conifers from broadleaf, was achieved by processing a Landsat 8 OLI (Operational Land Imager) scene. ALS-derived forest metrics initially greatly overestimated those measured at the ground in 230 plots. Conversely, ALS-derived tree density was greatly underestimated. To reduce ALS uncertainty, trees belonging to the dominated plane were removed from the ground dataset, assuming that they could not properly be detected by low-density ALS measures. Consequently, MAE (Mean Absolute Error) values significantly decreased to 4.0 m for tree height and to 0.19 cm for diameter estimates. Remaining discrepancies were related to a bias affecting the native ALS point cloud, which was modelled and removed. Final MAE values were 1.32 m for tree height, 0.08 m for diameter, 8.5 m2 ha−1 for basal area, and 0.06 m for quadratic mean diameter. Specifically focusing on tree height and diameter estimates, the significance of differences between ground and ALS estimates was tested relative to the expected 'best accuracy'. Results showed that after correction: 94.35% of tree height differences were lower than the corresponding reference value (2.86 m); 70% of tree diameter differences were lower than the corresponding reference value (4.5 cm for conifers and 6.8 cm for broadleaf). Finally, forest parameters were computed for the whole Cutfoot Sioux Experimental Forest. Main findings include: 1) all forest estimates based on a low-density ALS point cloud can be derived at plot level and not at a tree level; 2) tree height estimates obtained by low-density ALS point clouds at the plot level are highly reasonably accurate only after testing and modelling eventual error bias; 3) diameter, basal area, and quadratic mean diameter estimates have large uncertainties, suggesting the need for a higher point density and, probably, a better mapping of tree species (if possible) than achieved with a remote sensing-based approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柔弱熊猫发布了新的文献求助10
刚刚
完美世界应助红色的黑采纳,获得10
1秒前
1秒前
1秒前
2秒前
欢呼幼菱完成签到 ,获得积分10
3秒前
榜一大哥的负担完成签到 ,获得积分10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
3秒前
充电宝应助小慧采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Owen应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
4秒前
李健应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
紫琉花雨完成签到 ,获得积分10
5秒前
583420完成签到 ,获得积分10
6秒前
6秒前
Wzebrafish发布了新的文献求助10
6秒前
科研通AI5应助222采纳,获得10
6秒前
7秒前
Morch2021发布了新的文献求助10
7秒前
7秒前
NexusExplorer应助Qiaoshunyu采纳,获得10
8秒前
liyu发布了新的文献求助10
8秒前
8秒前
科研通AI2S应助荀紫萌采纳,获得10
8秒前
8秒前
zhao完成签到,获得积分10
8秒前
CodeCraft应助坚强紫山采纳,获得10
9秒前
HBin发布了新的文献求助10
9秒前
不安慕蕊完成签到,获得积分10
9秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Mechanochemistry of Solid Surfaces 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806719
求助须知:如何正确求助?哪些是违规求助? 3351444
关于积分的说明 10354221
捐赠科研通 3067286
什么是DOI,文献DOI怎么找? 1684457
邀请新用户注册赠送积分活动 809674
科研通“疑难数据库(出版商)”最低求助积分说明 765568