已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An artificial intelligence decision support system for the management of type 1 diabetes

决策支持系统 计算机科学 人工智能 知识管理
作者
Nichole S. Tyler,Clara Mosquera-Lopez,Leah M. Wilson,Robert H. Dodier,Deborah Branigan,Virginia Gabo,Florian H. Guillot,Wade W. Hilts,Joseph El Youssef,Jessica R. Castle,Peter G. Jacobs
出处
期刊:Nature metabolism [Nature Portfolio]
卷期号:2 (7): 612-619 被引量:118
标识
DOI:10.1038/s42255-020-0212-y
摘要

Type 1 diabetes (T1D) is characterized by pancreatic beta cell dysfunction and insulin depletion. Over 40% of people with T1D manage their glucose through multiple injections of long-acting basal and short-acting bolus insulin, so-called multiple daily injections (MDI)1,2. Errors in dosing can lead to life-threatening hypoglycaemia events (<70 mg dl-1) and hyperglycaemia (>180 mg dl-1), increasing the risk of retinopathy, neuropathy, and nephropathy. Machine learning (artificial intelligence) approaches are being harnessed to incorporate decision support into many medical specialties. Here, we report an algorithm that provides weekly insulin dosage recommendations to adults with T1D using MDI therapy. We employ a unique virtual platform3 to generate over 50,000 glucose observations to train a k-nearest neighbours4 decision support system (KNN-DSS) to identify causes of hyperglycaemia or hypoglycaemia and determine necessary insulin adjustments from a set of 12 potential recommendations. The KNN-DSS algorithm achieves an overall agreement with board-certified endocrinologists of 67.9% when validated on real-world human data, and delivers safe recommendations, per endocrinologist review. A comparison of inter-physician-recommended adjustments to insulin pump therapy indicates full agreement of 41.2% among endocrinologists, which is consistent with previous measures of inter-physician agreement (41-45%)5. In silico3,6 benchmarking using a platform accepted by the United States Food and Drug Administration for evaluation of artificial pancreas technologies indicates substantial improvement in glycaemic outcomes after 12 weeks of KNN-DSS use. Our data indicate that the KNN-DSS allows for early identification of dangerous insulin regimens and may be used to improve glycaemic outcomes and prevent life-threatening complications in people with T1D.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奶昔发布了新的文献求助10
刚刚
朱佳慧完成签到,获得积分10
1秒前
CipherSage应助FIGMA采纳,获得10
1秒前
Yasong完成签到 ,获得积分10
1秒前
夏侯乌完成签到,获得积分10
1秒前
Shanglinqin完成签到,获得积分10
1秒前
2秒前
耶格尔完成签到 ,获得积分10
2秒前
伊笙完成签到 ,获得积分10
2秒前
微风打了烊完成签到 ,获得积分10
3秒前
kehe!完成签到 ,获得积分0
4秒前
Caixtmx完成签到 ,获得积分10
5秒前
蓝胖子完成签到 ,获得积分10
5秒前
奥特斌完成签到 ,获得积分10
5秒前
42发布了新的文献求助10
6秒前
糖果完成签到 ,获得积分10
7秒前
就看最后一篇完成签到 ,获得积分10
7秒前
阮红亮完成签到,获得积分10
7秒前
壮观的谷冬完成签到 ,获得积分10
9秒前
斯文败类应助沉静白翠采纳,获得10
9秒前
在水一方应助Newky采纳,获得10
9秒前
禹卓完成签到,获得积分10
10秒前
岳小龙完成签到 ,获得积分10
15秒前
17秒前
脑洞疼应助一只羊采纳,获得10
20秒前
沉静白翠发布了新的文献求助10
23秒前
cis2014完成签到,获得积分10
23秒前
zpj完成签到 ,获得积分10
23秒前
礼岁岁完成签到 ,获得积分10
24秒前
Rita应助Caixtmx采纳,获得10
24秒前
wao完成签到 ,获得积分10
24秒前
25秒前
life的半边天完成签到 ,获得积分10
25秒前
26秒前
26秒前
上官完成签到 ,获得积分10
26秒前
xy完成签到 ,获得积分10
28秒前
28秒前
今我来思完成签到 ,获得积分10
28秒前
Fin2046发布了新的文献求助10
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795440
求助须知:如何正确求助?哪些是违规求助? 3340443
关于积分的说明 10300287
捐赠科研通 3057032
什么是DOI,文献DOI怎么找? 1677332
邀请新用户注册赠送积分活动 805385
科研通“疑难数据库(出版商)”最低求助积分说明 762491