亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas

计算机科学 辍学(神经网络) 人工神经网络 地下水位 数据集 集合(抽象数据类型) 标准化 灌区 表(数据库) 数据挖掘 过程(计算) 人工智能 水文学(农业) 机器学习 灌溉 地下水 生物 操作系统 工程类 岩土工程 程序设计语言 生态学
作者
Jianfeng Zhang,Yan Zhu,Xiaoping Zhang,Ming Ye,Jinzhong Yang
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:561: 918-929 被引量:692
标识
DOI:10.1016/j.jhydrol.2018.04.065
摘要

Predicting water table depth over the long-term in agricultural areas presents great challenges because these areas have complex and heterogeneous hydrogeological characteristics, boundary conditions, and human activities; also, nonlinear interactions occur among these factors. Therefore, a new time series model based on Long Short-Term Memory (LSTM), was developed in this study as an alternative to computationally expensive physical models. The proposed model is composed of an LSTM layer with another fully connected layer on top of it, with a dropout method applied in the first LSTM layer. In this study, the proposed model was applied and evaluated in five sub-areas of Hetao Irrigation District in arid northwestern China using data of 14 years (2000–2013). The proposed model uses monthly water diversion, evaporation, precipitation, temperature, and time as input data to predict water table depth. A simple but effective standardization method was employed to pre-process data to ensure data on the same scale. 14 years of data are separated into two sets: training set (2000–2011) and validation set (2012–2013) in the experiment. As expected, the proposed model achieves higher R2 scores (0.789–0.952) in water table depth prediction, when compared with the results of traditional feed-forward neural network (FFNN), which only reaches relatively low R2 scores (0.004–0.495), proving that the proposed model can preserve and learn previous information well. Furthermore, the validity of the dropout method and the proposed model’s architecture are discussed. Through experimentation, the results show that the dropout method can prevent overfitting significantly. In addition, comparisons between the R2 scores of the proposed model and Double-LSTM model (R2 scores range from 0.170 to 0.864), further prove that the proposed model’s architecture is reasonable and can contribute to a strong learning ability on time series data. Thus, one can conclude that the proposed model can serve as an alternative approach predicting water table depth, especially in areas where hydrogeological data are difficult to obtain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
直率的雪巧完成签到,获得积分10
2秒前
20秒前
love发布了新的文献求助10
26秒前
33秒前
love发布了新的文献求助10
40秒前
44秒前
53秒前
58秒前
ding应助科研通管家采纳,获得10
1分钟前
却之不恭6253完成签到,获得积分10
1分钟前
1分钟前
匹诺曹发布了新的文献求助10
1分钟前
1分钟前
love发布了新的文献求助10
1分钟前
1分钟前
love发布了新的文献求助40
2分钟前
2分钟前
love发布了新的文献求助10
2分钟前
2分钟前
love发布了新的文献求助10
2分钟前
2分钟前
在水一方应助左白易采纳,获得10
2分钟前
love发布了新的文献求助10
2分钟前
2分钟前
2分钟前
love发布了新的文献求助10
2分钟前
开朗的大叔完成签到,获得积分10
2分钟前
奈思完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
love发布了新的文献求助40
3分钟前
xiaolang2004完成签到,获得积分10
3分钟前
love发布了新的文献求助50
3分钟前
拼搏问薇完成签到 ,获得积分10
3分钟前
love发布了新的文献求助10
3分钟前
3分钟前
love发布了新的文献求助10
4分钟前
路过完成签到 ,获得积分10
4分钟前
4分钟前
love发布了新的文献求助10
4分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4111955
求助须知:如何正确求助?哪些是违规求助? 3650341
关于积分的说明 11559929
捐赠科研通 3355165
什么是DOI,文献DOI怎么找? 1843178
邀请新用户注册赠送积分活动 909295
科研通“疑难数据库(出版商)”最低求助积分说明 826175