亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas

计算机科学 辍学(神经网络) 人工神经网络 地下水位 数据集 集合(抽象数据类型) 标准化 灌区 表(数据库) 数据挖掘 过程(计算) 人工智能 水文学(农业) 机器学习 灌溉 地下水 操作系统 工程类 岩土工程 生物 程序设计语言 生态学
作者
Jianfeng Zhang,Yan Zhu,Xiaoping Zhang,Ming Ye,Jinzhong Yang
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:561: 918-929 被引量:692
标识
DOI:10.1016/j.jhydrol.2018.04.065
摘要

Predicting water table depth over the long-term in agricultural areas presents great challenges because these areas have complex and heterogeneous hydrogeological characteristics, boundary conditions, and human activities; also, nonlinear interactions occur among these factors. Therefore, a new time series model based on Long Short-Term Memory (LSTM), was developed in this study as an alternative to computationally expensive physical models. The proposed model is composed of an LSTM layer with another fully connected layer on top of it, with a dropout method applied in the first LSTM layer. In this study, the proposed model was applied and evaluated in five sub-areas of Hetao Irrigation District in arid northwestern China using data of 14 years (2000–2013). The proposed model uses monthly water diversion, evaporation, precipitation, temperature, and time as input data to predict water table depth. A simple but effective standardization method was employed to pre-process data to ensure data on the same scale. 14 years of data are separated into two sets: training set (2000–2011) and validation set (2012–2013) in the experiment. As expected, the proposed model achieves higher R2 scores (0.789–0.952) in water table depth prediction, when compared with the results of traditional feed-forward neural network (FFNN), which only reaches relatively low R2 scores (0.004–0.495), proving that the proposed model can preserve and learn previous information well. Furthermore, the validity of the dropout method and the proposed model’s architecture are discussed. Through experimentation, the results show that the dropout method can prevent overfitting significantly. In addition, comparisons between the R2 scores of the proposed model and Double-LSTM model (R2 scores range from 0.170 to 0.864), further prove that the proposed model’s architecture is reasonable and can contribute to a strong learning ability on time series data. Thus, one can conclude that the proposed model can serve as an alternative approach predicting water table depth, especially in areas where hydrogeological data are difficult to obtain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
科研通AI6应助Batby采纳,获得10
22秒前
24秒前
大道希言完成签到,获得积分10
36秒前
43秒前
JamesPei应助俊逸的刺猬采纳,获得10
45秒前
49秒前
FashionBoy应助科研通管家采纳,获得10
49秒前
星辰大海应助科研通管家采纳,获得10
49秒前
小安发布了新的文献求助10
54秒前
CodeCraft应助籍新如采纳,获得10
57秒前
Batby发布了新的文献求助10
1分钟前
在水一方应助小安采纳,获得30
1分钟前
1分钟前
籍新如发布了新的文献求助10
1分钟前
小安完成签到,获得积分20
1分钟前
高源伯完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
黄玉发布了新的文献求助10
2分钟前
2分钟前
yncjdxyjs发布了新的文献求助10
2分钟前
大模型应助roe采纳,获得10
3分钟前
yncjdxyjs完成签到,获得积分10
3分钟前
mg完成签到 ,获得积分10
3分钟前
3分钟前
ffff完成签到 ,获得积分10
3分钟前
机灵的衬衫完成签到 ,获得积分10
3分钟前
小崔加油发布了新的文献求助10
3分钟前
李志全完成签到 ,获得积分10
3分钟前
汉堡包应助黄玉采纳,获得10
3分钟前
健忘的雨安完成签到,获得积分10
3分钟前
滕皓轩完成签到 ,获得积分20
3分钟前
浮游应助dlfg采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
OJL完成签到,获得积分10
5分钟前
Ou完成签到,获得积分10
5分钟前
5分钟前
ABJ完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
A Systemic-Functional Study of Language Choice in Singapore 400
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4869817
求助须知:如何正确求助?哪些是违规求助? 4160665
关于积分的说明 12902001
捐赠科研通 3915519
什么是DOI,文献DOI怎么找? 2150478
邀请新用户注册赠送积分活动 1168832
关于科研通互助平台的介绍 1071763