柠檬醛
毒性
脾细胞
Zeta电位
化学
体内
药物输送
人口
药理学
材料科学
体外
生物化学
色谱法
纳米颗粒
医学
生物
纳米技术
精油
有机化学
生物技术
环境卫生
作者
Noraini Nordin,Swee Keong Yeap,Nur Rizi Zamberi,Nadiah Abu,Nurul Elyani Mohamad,Heshu Sulaiman Rahman,Chee Wun How,Mas Jaffri Masarudin,Rasedee Abdullah,Noorjahan Banu Alitheen
出处
期刊:PeerJ
[PeerJ, Inc.]
日期:2018-01-04
卷期号:6: e3916-e3916
被引量:37
摘要
The nanoparticle as a cancer drug delivery vehicle is rapidly under investigation due to its promising applicability as a novel drug delivery system for anticancer agents. This study describes the development, characterization and toxicity studies of a nanostructured lipid carrier (NLC) system for citral. Citral was loaded into the NLC using high pressure homogenization methods. The characterizations of NLC-citral were then determined through various methods. Based on Transmission Electron Microscope (TEM) analysis, NLC-Citral showed a spherical shape with an average diameter size of 54.12 ± 0.30 nm and a polydipersity index of 0.224 ± 0.005. The zeta potential of NLC-Citral was -12.73 ± 0.34 mV with an entrapment efficiency of 98.9 ± 0.124%, and drug loading of 9.84 ± 0.041%. Safety profile of the formulation was examined via in vitro and in vivo routes to study its effects toward normal cells. NLC-Citral exhibited no toxic effects towards the proliferation of mice splenocytes. Moreover, no mortality and toxic signs were observed in the treated groups after 28 days of treatment. There were also no significant alterations in serum biochemical analysis for all treatments. Increase in immunomodulatory effects of treated NLC-Citral and Citral groups was verified from the increase in CD4/CD3 and CD8/CD3 T cell population in both NLC-citral and citral treated splenocytes. This study suggests that NLC is a promising drug delivery system for citral as it has the potential in sustaining drug release without inducing any toxicity.
科研通智能强力驱动
Strongly Powered by AbleSci AI