激子
范德瓦尔斯力
异质结
材料科学
凝聚态物理
带隙
纳米技术
光电子学
化学物理
分子物理学
物理
结晶学
化学
分子
量子力学
作者
Simone Latini,Kirsten T. Winther,Thomas Olsen,Kristian S. Thygesen
出处
期刊:Nano Letters
[American Chemical Society]
日期:2016-12-27
卷期号:17 (2): 938-945
被引量:194
标识
DOI:10.1021/acs.nanolett.6b04275
摘要
van der Waals heterostructures (vdWH) are ideal systems for exploring light–matter interactions at the atomic scale. In particular, structures with a type-II band alignment can yield detailed insight into carrier-photon conversion processes, which are central to, for example, solar cells and light-emitting diodes. An important first step in describing such processes is to obtain the energies of the interlayer exciton states existing at the interface. Here we present a general first-principles method to compute the electronic quasi-particle (QP) band structure and excitonic binding energies of incommensurate vdWHs. The method combines our quantum electrostatic heterostructure (QEH) model for obtaining the dielectric function with the many-body GW approximation and a generalized 2D Mott–Wannier exciton model. We calculate the level alignment together with intra- and interlayer exciton binding energies of bilayer MoS2/WSe2 with and without intercalated hBN layers, finding excellent agreement with experimental photoluminescence spectra. A comparison to density functional theory calculations demonstrates the crucial role of self-energy and electron–hole interaction effects.
科研通智能强力驱动
Strongly Powered by AbleSci AI