Spatio-temporal Attention Graph Convolutions for Skeleton-based Action Recognition

计算机科学 判别式 RGB颜色模型 动作识别 人工智能 图形 模式识别(心理学) 卷积神经网络 骨架(计算机编程) 人体骨骼 光学(聚焦) 理论计算机科学 光学 物理 程序设计语言 班级(哲学)
作者
Cuong Le,Xin Liu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 140-153 被引量:1
标识
DOI:10.1007/978-3-031-31435-3_10
摘要

In skeleton-based action recognition, graph convolutional networks (GCN) have been applied to extract features based on the dynamic of the human body and the method has achieved excellent results recently. However, GCN-based techniques only focus on the spatial correlations between human joints and often overlook the temporal relationships. In an action sequence, the consecutive frames in a neighborhood contain similar poses and using only temporal convolutions for extracting local features limits the flow of useful information into the calculations. In many cases, the discriminative features can present in long-range time steps and it is important to also consider them in the calculations to create stronger representations. We propose an attentional graph convolutional network, which adapts self-attention mechanisms to respectively model the correlations between human joints and between every time steps for skeleton-based action recognition. On two common datasets, the NTU-RGB+D60 and the NTU-RGB+D120, the proposed method achieved competitive classification results compared to state-of-the-art methods. The project’s GitHub page: STA-GCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
善学以致用应助昭奚采纳,获得10
3秒前
halo完成签到,获得积分10
4秒前
木林森林木完成签到 ,获得积分10
4秒前
lwroche发布了新的文献求助10
5秒前
科研通AI5应助尚可采纳,获得10
5秒前
糊涂的清醒者完成签到,获得积分10
6秒前
6秒前
芹菜完成签到 ,获得积分10
6秒前
hjyylab应助重要的听白采纳,获得10
7秒前
cctv18给brief的求助进行了留言
7秒前
愉悦完成签到,获得积分10
7秒前
斯文败类应助阳光以筠采纳,获得10
8秒前
祎薇发布了新的文献求助10
9秒前
科研通AI5应助豆豆采纳,获得10
9秒前
JamJAM发布了新的文献求助10
9秒前
沉静的清涟完成签到,获得积分10
10秒前
xiaoshi完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
12秒前
12秒前
燕子完成签到,获得积分10
14秒前
dox应助111采纳,获得20
14秒前
15秒前
津津乐道发布了新的文献求助10
15秒前
illuminate完成签到 ,获得积分10
15秒前
骑着蜗牛追火箭完成签到 ,获得积分10
16秒前
16秒前
16秒前
halo完成签到,获得积分10
16秒前
16秒前
科研通AI5应助chongjian采纳,获得10
17秒前
17秒前
18秒前
19秒前
X_runner发布了新的文献求助10
19秒前
莫大力完成签到 ,获得积分10
20秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838293
求助须知:如何正确求助?哪些是违规求助? 3380617
关于积分的说明 10515159
捐赠科研通 3100208
什么是DOI,文献DOI怎么找? 1707388
邀请新用户注册赠送积分活动 821709
科研通“疑难数据库(出版商)”最低求助积分说明 772890