Generative DEM Void Filling With Terrain Feature-Guided Transfer Learning Assisted by Remote Sensing Images

地形 计算机科学 学习迁移 人工智能 特征(语言学) 遥感 计算机视觉 生成语法 模式识别(心理学) 地质学 地图学 地理 语言学 哲学
作者
Linwei Yue,Bing Gao,Xianwei Zheng
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:5
标识
DOI:10.1109/lgrs.2024.3407930
摘要

The quality of digital elevation models (DEMs) is easily affected by data voids in regions with complex terrain conditions. Numerous methods have been proposed to fill DEM voids by effectively exploiting the topographic information from neighboring areas or auxiliary DEMs. However, few studies have considered the integration of multi-modal data, which can provide valuable supplementary information in the areas with no high-quality reference DEM data. In this letter, we propose a generative DEM void filling method by exploring the integration of optical remote sensing images. The core idea is to utilize the image textures to infer the elevation values in the void regions with terrain texture-guided transfer learning. Specifically, the image context attention module (ICAM) is used to preliminarily estimate the missing topographic features by searching the similar patches with the guidance of image context. The terrain feature-guided residual pixel attention block (TFG-RPAB) is then employed to refine the void-filled features by transferring the image textures to topographic features. Finally, the void-filled DEM can be obtained by decoding the reconstructed topographic features. The results shows that the RMSE of RSAGAN is improved by 14.5% to 71.5% when DEM void filling. Both quantitative and qualitative evaluations demonstrate the superiority of the proposed method over the competitive methods in terms of DEM void filling. The source code is available at https://github.com/gaobingcug/RSAGAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助ZHU采纳,获得10
刚刚
爱吃鲷鱼烧的胖橘完成签到 ,获得积分10
1秒前
家家完成签到 ,获得积分10
2秒前
3秒前
3秒前
Jasper应助12采纳,获得10
3秒前
平淡寻菡完成签到 ,获得积分10
5秒前
关灯完成签到,获得积分10
5秒前
expuery完成签到,获得积分10
6秒前
鳗鱼芷巧发布了新的文献求助10
7秒前
琦琦777发布了新的文献求助10
9秒前
陈生发布了新的文献求助20
10秒前
12秒前
windcreator完成签到,获得积分10
12秒前
wangdada完成签到,获得积分10
12秒前
14秒前
WWW完成签到 ,获得积分10
16秒前
12发布了新的文献求助10
16秒前
学无止境完成签到,获得积分0
16秒前
凌小飞侠发布了新的文献求助10
21秒前
领导范儿应助失眠的血茗采纳,获得10
21秒前
张宁波完成签到,获得积分0
22秒前
12完成签到,获得积分20
23秒前
23秒前
陈生完成签到,获得积分10
26秒前
哄哄发布了新的文献求助10
28秒前
沐沧澜完成签到 ,获得积分10
28秒前
iu发布了新的文献求助10
28秒前
鸣笛应助小怪兽不吃人采纳,获得30
30秒前
每念至此完成签到,获得积分10
31秒前
清爽的难敌完成签到 ,获得积分10
32秒前
Dada应助风趣的寻凝采纳,获得10
33秒前
May应助聪明的幻枫采纳,获得10
33秒前
暗栀完成签到 ,获得积分10
34秒前
领导范儿应助老李啊采纳,获得10
35秒前
怕黑凝海发布了新的文献求助20
37秒前
Akim应助iu采纳,获得10
39秒前
标致醉波应助科研通管家采纳,获得50
40秒前
40秒前
思源应助科研通管家采纳,获得10
40秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3944957
求助须知:如何正确求助?哪些是违规求助? 3490004
关于积分的说明 11054463
捐赠科研通 3220992
什么是DOI,文献DOI怎么找? 1780363
邀请新用户注册赠送积分活动 865335
科研通“疑难数据库(出版商)”最低求助积分说明 799837