Development and validation of a simple and practical model for early detection of diabetic macular edema in patients with type 2 diabetes mellitus using easily accessible systemic variables

医学 逻辑回归 糖尿病 接收机工作特性 2型糖尿病 肌酐 逐步回归 糖尿病性视网膜病变 内科学 观察研究 2型糖尿病 内分泌学
作者
Honghua Yu,Yijun Hu,Qibo Zhu,Anyi Liang,Zijing Du,Chunwen Zheng,Yanhua Liang,Yuxiang Zheng,Yunyan Hu,Li Wang,Yingying Liang,Maiga Amadou,Ying Fang,Yuejuan Liu,Songfu Feng,Li Wang,Dan Cao,Jinxin Lin,Honghua Yu
出处
期刊:Journal of Translational Medicine [BioMed Central]
卷期号:22 (1)
标识
DOI:10.1186/s12967-024-05328-y
摘要

Abstract Objective Diabetic macular edema (DME) is the leading cause of visual impairment in patients with diabetes mellitus (DM). The goal of early detection has not yet achieved due to a lack of fast and convenient methods. Therefore, we aim to develop and validate a prediction model to identify DME in patients with type 2 diabetes mellitus (T2DM) using easily accessible systemic variables, which can be applied to an ophthalmologist-independent scenario. Methods In this four-center, observational study, a total of 1994 T2DM patients who underwent routine diabetic retinopathy screening were enrolled, and their information on ophthalmic and systemic conditions was collected. Forward stepwise multivariable logistic regression was performed to identify risk factors of DME. Machine learning and MLR (multivariable logistic regression) were both used to establish prediction models. The prediction models were trained with 1300 patients and prospectively validated with 104 patients from Guangdong Provincial People’s Hospital (GDPH). A total of 175 patients from Zhujiang Hospital (ZJH), 115 patients from the First Affiliated Hospital of Kunming Medical University (FAHKMU), and 100 patients from People’s Hospital of JiangMen (PHJM) were used as external validation sets. Area under the receiver operating characteristic curve (AUC), accuracy (ACC), sensitivity, and specificity were used to evaluate the performance in DME prediction. Results The risk of DME was significantly associated with duration of DM, diastolic blood pressure, hematocrit, glycosylated hemoglobin, and urine albumin-to-creatinine ratio stage. The MLR model using these five risk factors was selected as the final prediction model due to its better performance than the machine learning models using all variables. The AUC, ACC, sensitivity, and specificity were 0.80, 0.69, 0.80, and 0.67 in the internal validation, and 0.82, 0.54, 1.00, and 0.48 in prospective validation, respectively. In external validation, the AUC, ACC, sensitivity and specificity were 0.84, 0.68, 0.90 and 0.60 in ZJH, 0.89, 0.77, 1.00 and 0.72 in FAHKMU, and 0.80, 0.67, 0.75, and 0.65 in PHJM, respectively. Conclusion The MLR model is a simple, rapid, and reliable tool for early detection of DME in individuals with T2DM without the needs of specialized ophthalmologic examinations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
栖木木完成签到 ,获得积分10
4秒前
4秒前
ZJZALLEN完成签到 ,获得积分10
6秒前
包子凯越完成签到,获得积分10
7秒前
宁静致远QY完成签到,获得积分10
10秒前
时2完成签到,获得积分10
14秒前
王王的狗子完成签到 ,获得积分10
15秒前
明亮的青旋完成签到 ,获得积分10
15秒前
无私的朝雪完成签到 ,获得积分10
20秒前
欧阳静芙完成签到,获得积分10
23秒前
24秒前
大个应助nav采纳,获得10
24秒前
不吃了完成签到 ,获得积分10
27秒前
zhaolee完成签到 ,获得积分10
28秒前
Jun发布了新的文献求助10
28秒前
应俊完成签到 ,获得积分10
32秒前
欸嘿完成签到,获得积分10
34秒前
39秒前
alexlpb完成签到,获得积分0
40秒前
烂漫人达完成签到 ,获得积分10
40秒前
40秒前
布曲完成签到 ,获得积分10
42秒前
YIFGU完成签到 ,获得积分10
42秒前
子非鱼完成签到 ,获得积分10
45秒前
qing1245发布了新的文献求助10
45秒前
50秒前
hyf完成签到 ,获得积分10
52秒前
冬菊完成签到 ,获得积分10
54秒前
56秒前
灰太狼大王完成签到 ,获得积分10
59秒前
bone完成签到,获得积分10
1分钟前
Java完成签到,获得积分10
1分钟前
Trouvailla发布了新的文献求助10
1分钟前
克姑美完成签到 ,获得积分10
1分钟前
nove999完成签到 ,获得积分10
1分钟前
道友等等我完成签到,获得积分0
1分钟前
Amon完成签到,获得积分10
1分钟前
Hightowerliu18完成签到,获得积分10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779296
求助须知:如何正确求助?哪些是违规求助? 3324813
关于积分的说明 10220097
捐赠科研通 3039971
什么是DOI,文献DOI怎么找? 1668528
邀请新用户注册赠送积分活动 798717
科研通“疑难数据库(出版商)”最低求助积分说明 758503