Improving stability and safety in concrete structures against high-energy projectiles: a machine learning perspective

透视图(图形) 射弹 理论(学习稳定性) 材料科学 法律工程学 计算机科学 工程类 人工智能 机器学习 冶金
作者
Qianhui Zhang,Yuzhen Jin,Guangzhi Wang,Qingmei Sun,Hamzeh Ghorbani
出处
期刊:Frontiers in Materials [Frontiers Media]
卷期号:11 被引量:10
标识
DOI:10.3389/fmats.2024.1416918
摘要

Concrete structures are commonly used as secure settlements and strategic shelters due to their inherent strength, durability, and wide availability. Examining the robustness and integrity of strategic concrete structures in the face of super-energy projectiles is of utmost significance in safeguarding vital infrastructure sectors, ensuring the well-being of individuals, and advancing the course of worldwide sustainable progress. This research focuses on forecasting the penetration depth (BPD) through the application of robust models, such as Multilayer Perceptron (MLP), Support Vector Machine (SVM), Light Gradient Boosting Machine (LightGBM), and K-Nearest Neighbors (KNN) as ML models. The dataset used consists of 1,020 data points sourced from the National Institute of Standards and Technology (NIST), encompassing various parameters such as cement content (Cp), ground granulated blast-furnace slag (GGBFS), fly ash content (FA), water portion (Wp), superplasticizer content (Sp), coarse aggregate content (CA), fine aggregate content (FAA), concrete sample age (t), concrete compressive strength (CCS), gun type (G-type), bullet caliber (B-Cali), bullet weight (Wb), and bullet velocity (Vb). Feature selection techniques revealed that the MLP model, incorporating eight input variables (FA, CA, Sp, GGBFS, Cp, t, FAA, and CCS), provides the most accurate predictions for BPD across the entire dataset. Comparing the four models used in this study, KNN demonstrates distinct superiority over the other methods. KNN, a non-parametric ML model used for classification and regression, possesses several advantages, including simplicity, non-parametric nature, no training requirements, robustness to noisy data, suitability for large datasets, and interpretability. The results reveal that KNN outperforms the other models presented in this paper, exhibiting an R 2 value of 0.9905 and an RMSE value of 0.1811 cm, signifying higher accuracy in its predictions compared to the other models. Finally, based on the error analysis across iterations, it is evident that the final accuracy error of the KNN model surpasses that of the SVM, MLP, and LightGBM models, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
基质的寅博完成签到,获得积分10
1秒前
叶等等发布了新的文献求助10
1秒前
2秒前
Cc发布了新的文献求助10
3秒前
4秒前
好好学习发布了新的文献求助10
5秒前
blue完成签到,获得积分10
5秒前
xiaowu完成签到,获得积分10
5秒前
6秒前
7秒前
xuxu发布了新的文献求助10
7秒前
9秒前
低温少年完成签到,获得积分10
9秒前
无花果应助Cc采纳,获得10
9秒前
suolonglong完成签到,获得积分10
10秒前
10秒前
低温少年发布了新的文献求助10
11秒前
漂亮忆南发布了新的文献求助30
12秒前
挽星完成签到 ,获得积分10
12秒前
彭于晏应助老实的水蜜桃采纳,获得10
12秒前
12秒前
欧气青年发布了新的文献求助10
14秒前
隐形曼青应助鸡鸡bong采纳,获得10
16秒前
Cc完成签到,获得积分20
16秒前
挽星关注了科研通微信公众号
16秒前
Pursue。发布了新的文献求助10
16秒前
Cc完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
18秒前
可爱的函函应助饭饭采纳,获得10
19秒前
20秒前
科研通AI5应助Cc采纳,获得10
20秒前
21秒前
gelinhao完成签到,获得积分10
21秒前
虎正凯完成签到 ,获得积分10
21秒前
小兔子乖乖完成签到,获得积分10
22秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Colorectal cancer: understanding of disease 400
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4855830
求助须知:如何正确求助?哪些是违规求助? 4152592
关于积分的说明 12869118
捐赠科研通 3902380
什么是DOI,文献DOI怎么找? 2144250
邀请新用户注册赠送积分活动 1163840
关于科研通互助平台的介绍 1064463