Improving Forest Above-Ground Biomass Estimation by Integrating Individual Machine Learning Models

生物量(生态学) 环境科学 估计 随机森林 计算机科学 机器学习 环境资源管理 农林复合经营 生态学 工程类 生物 系统工程
作者
Mi Luo,Shoaib Ahmad Anees,Qiuyan Huang,Qin Xin,Zhihao Qin,Jianlong Fan,Guangping Han,Liguo Zhang,Helmi Zulhaidi Mohd Shafri
出处
期刊:Forests [MDPI AG]
卷期号:15 (6): 975-975 被引量:35
标识
DOI:10.3390/f15060975
摘要

The accurate estimation of forest above-ground biomass (AGB) is crucial for sustainable forest management and tracking the carbon cycle of forest ecosystem. Machine learning algorithms have been proven to have great potential in forest AGB estimation with remote sensing data. Though many studies have demonstrated that a single machine learning model can produce highly accurate estimations of forest AGB in many situations, efforts are still required to explore the possible improvement in forest AGB estimation for a specific scenario under study. This study aims to investigate the performance of novel ensemble machine learning methods for forest AGB estimation and analyzes whether these methods are affected by forest types, independent variables, and spatial autocorrelation. Four well-known machine learning models (CatBoost, LightGBM, random forest (RF), and XGBoost) were compared for forest AGB estimation in the study using eight scenarios devised on the basis of two study regions, two variable types, and two validation strategies. Subsequently, a hybrid model combining the strengths of these individual models was proposed for forest AGB estimation. The findings indicated that no individual model outperforms the others in all scenarios. The RF model demonstrates superior performance in scenarios 5, 6, and 7, while the CatBoost model shows the best performance in the remaining scenarios. Moreover, the proposed hybrid model consistently has the best performance in all scenarios in spite of some uncertainties. The ensemble strategy developed in this study for the hybrid model substantially improves estimation accuracy and exhibits greater stability, effectively addressing the challenge of model selection encountered in the forest AGB forecasting process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
小杜吃不饱完成签到 ,获得积分20
4秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
10秒前
一颗酒窝完成签到 ,获得积分10
10秒前
杨迪祥完成签到 ,获得积分10
11秒前
12秒前
16秒前
16秒前
16秒前
njufeng完成签到,获得积分10
16秒前
kunli发布了新的文献求助10
17秒前
17秒前
19秒前
20秒前
20秒前
gemini0615发布了新的文献求助10
20秒前
21秒前
21秒前
PengChun完成签到,获得积分10
21秒前
小豆子发布了新的文献求助10
22秒前
25秒前
西瓜刀发布了新的文献求助10
25秒前
27秒前
27秒前
Crane发布了新的文献求助10
27秒前
27秒前
蓝天应助谨慎觅露采纳,获得10
29秒前
量子星尘发布了新的文献求助10
30秒前
bkagyin应助小豆子采纳,获得10
30秒前
31秒前
31秒前
高兴的小完成签到,获得积分10
32秒前
Luna_aaa应助小鱼头采纳,获得10
32秒前
光之战士完成签到 ,获得积分10
32秒前
theThreeMagi发布了新的文献求助10
33秒前
ding应助研友_5Zl9D8采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633845
求助须知:如何正确求助?哪些是违规求助? 4729625
关于积分的说明 14986791
捐赠科研通 4791677
什么是DOI,文献DOI怎么找? 2558987
邀请新用户注册赠送积分活动 1519408
关于科研通互助平台的介绍 1479690