Evaluating the Performance of In silico Tools for PRRT2 Missense Variants

错义突变 生物信息学 生物 遗传学 计算生物学 突变 生物信息学 基因
作者
Hui Sun,Wang Song,Bin Li
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science]
卷期号:27
标识
DOI:10.2174/0113862073308898240607090256
摘要

Background: Variants in the PRRT2 gene are associated with paroxysmal kinesigenic dyskinesia and other episodic disorders. With the employment of variant screening in patients with episodic dyskinesia, many PRRT2 variants have been discovered. Bioinformatics tools are becoming increasingly important for predicting the functional significance of variants. This study aimed to evaluate the performance of six in silico tools for PRRT2 missense variants. Methods: Pathogenic PRRT2 variants were retrieved from the Human Gene Mutation Database (HGMD) and literature from the PubMed database. The benign set of non-deleterious variants was retrieved from the Genome Aggregation Database (gnomAD). The overall accuracy, sensitivity, specificity, positive predictive values, and negative predictive values of SIFT, PolyPhen2, MutationTaster, CADD, Fathmm, and Provean were analyzed. The MCC score and ROC curve were calculated. The GraphPad Prism 8.0 software was used to plot ROC curves for the six bioinformatics software. Results: A total of 45 missense variants with confirmed pathogenicity were used as a positive set, and 222 missense variants were used as a negative set. The top three tools in accuracy are Fathmm, Provean, and MutationTaster. The top three predictors in sensitivity are SIFT, PolyPhen2, and CADD. Regarding specificity, the top three tools were Provean, Fathmm, and MutationTaster. In terms of the MCC and F-score, the highest degree was observed in Fathmm. Fathmm also had the highest AUC score. The cutoff values of Fathmm, CADD, PolyPhen2, and Provean were between the median prediction scores of the positive and negative sets. In contrast, the cutoff value of SIFT was below the median prediction score of the positive and negative sets. Fathmm had the highest accuracy. Conclusion: The prediction performance of six in silico tools differed among the parameters. Fathmm had the best prediction performance, with the highest accuracy and MCC/F-score for PRRT2 missense variants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
米朗心发布了新的文献求助10
刚刚
刚刚
威武的翠安完成签到 ,获得积分10
1秒前
漉浔发布了新的文献求助10
1秒前
发大财完成签到,获得积分10
1秒前
科目三应助曾经秋天采纳,获得10
1秒前
阿米完成签到,获得积分10
1秒前
yfe完成签到,获得积分10
2秒前
QiLe完成签到,获得积分10
2秒前
乐空思应助美好谷南采纳,获得10
2秒前
开朗的诺言完成签到,获得积分10
2秒前
3秒前
七七发布了新的文献求助10
3秒前
素心发布了新的文献求助10
3秒前
认真台灯发布了新的文献求助10
4秒前
4秒前
YaoHui发布了新的文献求助10
5秒前
在水一方应助文艺的如娆采纳,获得10
5秒前
季博常发布了新的文献求助10
5秒前
小马甲应助Y12采纳,获得10
5秒前
5秒前
6秒前
YuexYue完成签到,获得积分10
6秒前
axsx发布了新的文献求助10
6秒前
超帅的怡发布了新的文献求助10
6秒前
7秒前
7秒前
内向的小白菜应助阿萤采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
CodeCraft应助灼灼采纳,获得10
8秒前
天天快乐应助zxx采纳,获得10
9秒前
9秒前
田様应助腾茹煊采纳,获得10
9秒前
10秒前
狂野的雨灵完成签到,获得积分10
10秒前
彭于晏应助小房子采纳,获得10
11秒前
11秒前
11秒前
qqq发布了新的文献求助10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444