Privacy-Enhanced Prototype-Based Federated Cross-Modal Hashing for Cross-Modal Retrieval

情态动词 计算机科学 散列函数 情报检索 计算机安全 材料科学 高分子化学
作者
Ruifan Zuo,C. Zheng,Fengling Li,Lei Zhu,Zheng Zhang
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (9): 1-19 被引量:7
标识
DOI:10.1145/3674507
摘要

Cross-modal hashing is widely used for efficient similarity searches, improving data processing efficiency, and reducing storage costs. Existing cross-modal hashing methods primarily focus on centralized training scenarios, where fixed-scale and fixed-category multi-modal data is collected beforehand. However, these methods often face challenges associated with the potential risk of privacy breaches and high data communication costs during data transmission in real-world multimedia retrieval tasks. To tackle these challenges, in this article, we propose an efficient privacy-enhanced prototype-based federated cross-modal hashing (PEPFCH). In PEPFCH, we integrate local and global prototypes in order to effectively capture the distinctive traits of individual clients, while also harnessing the collective intelligence of the entire federated learning system. Moreover, to ensure the security of prototype information and prevent its disclosure during the aggregation process, we use a prototype encryption transmission mechanism to encrypt the prototype information before transmission, making it challenging for attackers to gain access to sensitive data. Additionally, to facilitate personalized federated learning and alleviate the issue of parametric catastrophic forgetting, we establish the image and text hyper-networks for each client and adopt a hyper-network extension strategy to selectively preserve and update previously acquired knowledge when acquiring new concepts or categories. Comprehensive experiments highlight the efficiency and superiority of our proposed method. To enhance research and accessibility, we have publicly released our source codes at: https://github.com/vindahi/PEPFCH .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
激昂的飞松完成签到,获得积分10
2秒前
LG应助陶醉的平萱采纳,获得10
4秒前
陶醉笑柳发布了新的文献求助30
6秒前
7秒前
陶醉的平萱完成签到,获得积分10
8秒前
田様应助爱吃榴莲采纳,获得10
9秒前
充电宝应助cc采纳,获得10
9秒前
xxfsx应助背后晓兰采纳,获得10
10秒前
青春梦完成签到 ,获得积分10
14秒前
小党完成签到,获得积分10
15秒前
17秒前
17秒前
www发布了新的文献求助10
18秒前
香蕉觅云应助whatsup采纳,获得10
19秒前
20秒前
是木易呀发布了新的文献求助30
21秒前
D_Daying完成签到 ,获得积分10
21秒前
粗犷的尔阳完成签到,获得积分10
21秒前
21秒前
谨慎的雁菡完成签到 ,获得积分10
24秒前
24秒前
今后应助迅速的千风采纳,获得10
26秒前
快乐小孩发布了新的文献求助10
26秒前
李健应助yyyy采纳,获得10
27秒前
28秒前
爱听歌蜻蜓应助coffee采纳,获得10
30秒前
zz发布了新的文献求助10
30秒前
无题完成签到,获得积分10
31秒前
小心胖虎完成签到,获得积分20
31秒前
31秒前
科研通AI6应助endocrine采纳,获得10
32秒前
善逸完成签到,获得积分10
33秒前
33秒前
yang发布了新的文献求助10
33秒前
彭于晏应助小心胖虎采纳,获得10
34秒前
Hello应助研友_8Wz5MZ采纳,获得10
35秒前
36秒前
悦耳静枫完成签到 ,获得积分10
37秒前
酷波er应助Narnehc采纳,获得10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5400904
求助须知:如何正确求助?哪些是违规求助? 4519974
关于积分的说明 14077499
捐赠科研通 4432892
什么是DOI,文献DOI怎么找? 2433882
邀请新用户注册赠送积分活动 1426087
关于科研通互助平台的介绍 1404695