Environmentally friendly strategy for discovering the toxicity and mechanisms of nerve injury induced by acrylamide via network toxicology combined with molecular dynamics simulation

丙烯酰胺 环境友好型 毒性 环境毒理学 计算机科学 生化工程 毒理 化学 生物 工程类 生态学 聚合物 有机化学 共聚物
作者
Xupeng Jin,Yuanzhi Huang,Yan Zhang,Wanting Hu,Jiahui Yu,Wei Wu,Shuzheng Wang
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4553439/v1
摘要

Abstract This study aimed to explore an efficient and low-cost toxicological analysis method for environmental pollutants by taking the mechanism of acrylamide induced nerve injury as an example. Potential targets of acrylamide were retrieved by combining the ChEMBL, Super-PRED, SwissTargetPrediction, Similarity ensemble approach, and STITCH databases. The GeneCards and OMIM databases were searched to identify the potential gene pool related to neurotoxicity and to identify intersecting genes. These genes were subsequently entered into the STRING database to construct a protein interaction network. GO and KEGG analyses were conducted by using the DAVID platform, and the molecular docking of intersection targets was assessed by using AutoDock 1.5.7 software. Finally, molecular dynamics simulation was used to verify the stability of the optimal binding model for molecular docking. After screening, 142 intersection targets were obtained, with TP53, PIK3CA, PIK3R1, PTK2, and GRB2 being the key targets of acrylamide-induced nerve injury. GO and KEGG enrichment analyses results showed that the mechanism of action is related mainly to the PI3K-Akt signaling pathway and microRNAs involved in cancer pathogenesis. Molecular docking confirmed that acrylamide was strongly bound to key targets. The stability of the interaction between acrylamide and TP53 was verified by molecular dynamics simulation. The proposed strategy not only reduces the initial experimental cost of identifying new pollutants and increases the amount of information on the toxic effects of environmental pollutants but also improves the efficiency of regulatory authorities in identifying environmental pollutant hazards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cctv18应助kanglan采纳,获得10
2秒前
speed完成签到 ,获得积分10
2秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
6秒前
Singularity应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
Singularity应助科研通管家采纳,获得10
6秒前
zybhwj0818应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
7秒前
unowhoiam完成签到 ,获得积分10
7秒前
浅辰完成签到 ,获得积分10
8秒前
8秒前
10秒前
真真完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
科研通AI5应助呆萌的语芹采纳,获得50
14秒前
pygxy发布了新的文献求助10
14秒前
ihonest完成签到,获得积分10
18秒前
future完成签到 ,获得积分10
22秒前
LJJ完成签到 ,获得积分10
22秒前
qks完成签到 ,获得积分10
25秒前
ylyao完成签到 ,获得积分10
28秒前
gao完成签到 ,获得积分10
30秒前
31秒前
神勇友灵完成签到,获得积分10
33秒前
tetrakis完成签到,获得积分10
37秒前
hy1234完成签到 ,获得积分10
37秒前
zhao完成签到,获得积分10
37秒前
量子星尘发布了新的文献求助10
38秒前
xiuxiu发布了新的文献求助50
39秒前
45秒前
阿连完成签到,获得积分10
47秒前
AHA完成签到,获得积分10
48秒前
doctor发布了新的文献求助10
49秒前
核动力牛马完成签到,获得积分10
49秒前
xiuxiu完成签到,获得积分10
51秒前
狗妹那塞完成签到,获得积分10
52秒前
57秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3883885
求助须知:如何正确求助?哪些是违规求助? 3426178
关于积分的说明 10747273
捐赠科研通 3151011
什么是DOI,文献DOI怎么找? 1739202
邀请新用户注册赠送积分活动 839633
科研通“疑难数据库(出版商)”最低求助积分说明 784734