Killing Two Birds with One Stone: Cross-modal Reinforced Prompting for Graph and Language Tasks

情态动词 计算机科学 图形 自然语言处理 人工智能 理论计算机科学 化学 高分子化学
作者
Wenyuan Jiang,Wenwei Wu,Le Zhang,Zixuan Yuan,Jian Xiang,Jingbo Zhou,Hui Xiong
标识
DOI:10.1145/3637528.3671742
摘要

In recent years, Graph Neural Networks (GNNs) and Large Language Models (LLMs) have exhibited remarkable capability in addressing different graph learning and natural language tasks, respectively. Motivated by this, integrating LLMs with GNNs has been increasingly studied to acquire transferable knowledge across modalities, which leads to improved empirical performance in language and graph domains. However, existing studies mainly focused on a single-domain scenario by designing complicated integration techniques to manage multimodal data effectively. Therefore, a concise and generic learning framework for multi-domain tasks, i.e., graph and language domains, is highly desired yet remains under-exploited due to two major challenges. First, the language corpus of downstream tasks differs significantly from graph data, making it hard to bridge the knowledge gap between modalities. Second, not all knowledge demonstrates immediate benefits for downstream tasks, potentially introducing disruptive noise to context-sensitive models like LLMs. To tackle these challenges, we propose a novel plug-and-play framework for incorporating a lightweight cross-domain prompting method into both language and graph learning tasks. Specifically, we first convert the textual input into a domain-scalable prompt, which not only preserves the semantic and logical contents of the textual input, but also highlights related graph information as external knowledge for different domains. Then, we develop a reinforcement learning-based method to learn the optimal edge selection strategy for useful knowledge extraction, which profoundly sharpens the multi-domain model capabilities. In addition, we introduce a joint multi-view optimization module to regularize agent-level collaborative learning across two domains. Finally, extensive empirical justifications over 23 public and synthetic datasets demonstrate that our approach can be applied to diverse multi-domain tasks more accurately, robustly, and reasonably, and improve the performances of the state-of-the-art graph and language models in different learning paradigms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aiyawy完成签到 ,获得积分10
5秒前
hsrlbc完成签到,获得积分10
8秒前
西安浴日光能赵炜完成签到,获得积分10
8秒前
hhh2018687完成签到,获得积分10
11秒前
obaica完成签到,获得积分10
12秒前
细胞呵呵完成签到 ,获得积分10
15秒前
张若旸完成签到 ,获得积分10
15秒前
17秒前
ng完成签到 ,获得积分10
17秒前
小李子完成签到,获得积分10
17秒前
帅气的沧海完成签到 ,获得积分10
19秒前
任性的思远完成签到 ,获得积分10
23秒前
科研通AI5应助研友_ZlvpxL采纳,获得10
27秒前
zz完成签到 ,获得积分10
29秒前
沉静皮带完成签到 ,获得积分10
31秒前
35秒前
jfc完成签到,获得积分10
37秒前
xioabu完成签到,获得积分10
37秒前
涛1完成签到 ,获得积分10
39秒前
xioabu发布了新的文献求助10
39秒前
pangkuan发布了新的文献求助10
49秒前
胖胖橘完成签到 ,获得积分10
55秒前
digger2023完成签到 ,获得积分10
57秒前
忧虑的静柏完成签到 ,获得积分10
58秒前
zhenzhen完成签到,获得积分10
1分钟前
火星人完成签到 ,获得积分10
1分钟前
蔡勇强完成签到 ,获得积分10
1分钟前
1分钟前
chengchenwu发布了新的文献求助10
1分钟前
二世小卒完成签到 ,获得积分10
1分钟前
1分钟前
eershi完成签到,获得积分10
1分钟前
loren313完成签到,获得积分0
1分钟前
糊涂的剑发布了新的文献求助10
1分钟前
chengchenwu完成签到,获得积分10
1分钟前
科研通AI5应助糊涂的剑采纳,获得10
1分钟前
Vegeta完成签到 ,获得积分10
1分钟前
潘fujun完成签到 ,获得积分10
1分钟前
个性仙人掌完成签到 ,获得积分10
2分钟前
css发布了新的文献求助10
2分钟前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819982
求助须知:如何正确求助?哪些是违规求助? 3362858
关于积分的说明 10418933
捐赠科研通 3081206
什么是DOI,文献DOI怎么找? 1695017
邀请新用户注册赠送积分活动 814815
科研通“疑难数据库(出版商)”最低求助积分说明 768539