Is artificial intelligence prepared for the 24-h shifts in the ICU?

医学 重症监护医学
作者
Filipe Gonzalez,Cristina Santonocito,Tomás Lamasb,Pedro Henrique Peixoto Costa,Susana M. Vieira,Hugo Alexandre Ferreira,Filippo Sanfilippo
出处
期刊:Anaesthesia, critical care & pain medicine [Elsevier BV]
卷期号:43 (6): 101431-101431 被引量:11
标识
DOI:10.1016/j.accpm.2024.101431
摘要

Integrating machine learning (ML) into intensive care units (ICUs) can significantly enhance patient care and operational efficiency. ML algorithms can analyze vast amounts of data from electronic health records, physiological monitoring systems, and other medical devices, providing real-time insights and predictive analytics to assist clinicians in decision-making. ML has shown promising results in predictive modeling for patient outcomes, early detection of sepsis, optimizing ventilator settings, and resource allocation. For instance, predictive algorithms have demonstrated high accuracy in forecasting patient deterioration, enabling timely interventions and reducing mortality rates. Despite these advancements, challenges such as data heterogeneity, integration with existing clinical workflows, and the need for transparency and interpretability of ML models persist. The deployment of ML in ICUs also raises ethical and legal considerations regarding patient privacy and the potential for algorithmic biases. For clinicians interested in the early embracing of AI-driven changes in clinical practice, in this review, we discuss the challenges of integrating AI and ML tools in the ICU environment in several steps and issues: (1) Main categories of ML algorithms; (2) From data enabling to ML development; (3) Decision-support systems that will allow patient stratification, accelerating the foresight of adequate individual care; (4) Improving patient outcomes and healthcare efficiency, with positive society and research implications; (5) Risks and barriers to AI-ML application to the healthcare system, including transparency, privacy, and ethical concerns.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到 ,获得积分10
1秒前
SEANFLY发布了新的文献求助10
1秒前
星辰发布了新的文献求助10
1秒前
王晖发布了新的文献求助10
1秒前
豆豆哥完成签到 ,获得积分10
2秒前
uuuu发布了新的文献求助10
2秒前
007完成签到,获得积分10
2秒前
2秒前
程老六发布了新的文献求助10
2秒前
蓝胖胖完成签到 ,获得积分10
3秒前
蓝莓完成签到 ,获得积分10
3秒前
遇见发布了新的文献求助10
3秒前
顺心飞绿完成签到 ,获得积分10
3秒前
4秒前
林珍发布了新的文献求助10
4秒前
4秒前
树德完成签到,获得积分10
4秒前
天天快乐应助玉鱼儿采纳,获得10
5秒前
5秒前
zyy完成签到,获得积分20
5秒前
Rakuen42发布了新的文献求助10
6秒前
6秒前
顾矜应助喜洋羊采纳,获得10
6秒前
研友_VZG7GZ应助cqq采纳,获得10
6秒前
彭于晏应助Jan采纳,获得10
6秒前
Lemon发布了新的文献求助10
6秒前
梅溪湖的提词器完成签到,获得积分10
7秒前
zhouzhou完成签到,获得积分10
7秒前
小菜瓜完成签到,获得积分10
7秒前
淡然柚子发布了新的文献求助10
8秒前
9秒前
顾矜应助时荒采纳,获得10
9秒前
10秒前
10秒前
10秒前
王振强发布了新的文献求助20
11秒前
小菜瓜发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396796
求助须知:如何正确求助?哪些是违规求助? 4517121
关于积分的说明 14062479
捐赠科研通 4428983
什么是DOI,文献DOI怎么找? 2432179
邀请新用户注册赠送积分活动 1424661
关于科研通互助平台的介绍 1403657