Distributionally Robust Newsvendor Under Stochastic Dominance with a Feature-Based Application

报童模式 模棱两可 随机优势 计算机科学 数学优化 稳健优化 数学 供应链 政治学 法学 程序设计语言
作者
Mingyang Fu,Xiaobo Li,Lianmin Zhang
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:26 (5): 1962-1977 被引量:3
标识
DOI:10.1287/msom.2023.0159
摘要

Problem definition: In this paper, we study the newsvendor problem under some distributional ambiguity sets and explore their relations. Additionally, we explore the benefits of implementing this robust solution in the feature-based newsvendor problem. Methodology and results: We propose a new type of discrepancy-based ambiguity set, the JW ambiguity set, and analyze it within the framework of first-order stochastic dominance. We show that the distributionally robust optimization (DRO) problem with this ambiguity set admits a closed-form solution for the newsvendor loss. This result also implies that the newsvendor problem under the well-known infinity-Wasserstein ambiguity set and Lévy ball ambiguity set admit closed-form inventory levels as a by-product. In the application of feature-based newsvendor, we adopt general kernel methods to estimate the conditional demand distribution and apply our proposed DRO solutions to account for the estimation error. Managerial implications: The closed-form solutions enable an efficient computation of optimal inventory levels. In addition, we explore the property of optimal robust inventory levels with respect to the nonrobust version via concepts of perceived critical ratio and mean repulsion. The results of numerical experiments and the case study indicate that the proposed model outperforms other state-of-the-art approaches, particularly in environments where demand is influenced by covariates and difficult to estimate. Funding: X. Li is supported by the Singapore Ministry of Education [Tier 1 Grant 23-0619-P0001, 24-0500-A0001] and National Natural Science Foundation of China [Grant 72331004]. L. Zhang is partially supported by the National Natural Science Foundation of China [Grants 72171156 and 72231002] and the Hong Kong Research Grants Council [Grant 16212419]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2023.0159 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
再慕完成签到,获得积分10
2秒前
3秒前
3秒前
范大大完成签到,获得积分10
4秒前
积极无敌完成签到 ,获得积分10
4秒前
上官若男应助迷人高山采纳,获得10
4秒前
xiaole完成签到,获得积分10
5秒前
Lucas应助lizuosheng1972采纳,获得10
5秒前
西洛他唑完成签到 ,获得积分10
6秒前
6秒前
7秒前
gqfqg发布了新的文献求助10
7秒前
萨尼铁塔完成签到,获得积分20
8秒前
大模型应助海贼学术采纳,获得10
8秒前
火花发布了新的文献求助10
8秒前
流砂完成签到,获得积分10
9秒前
千早爱音完成签到 ,获得积分10
9秒前
丘比特应助Sakura采纳,获得10
9秒前
9秒前
爱学习的鼠鼠完成签到,获得积分10
9秒前
穆仰发布了新的文献求助30
10秒前
King完成签到,获得积分20
10秒前
gorgeous完成签到,获得积分10
11秒前
11秒前
12秒前
傅三毒发布了新的文献求助10
12秒前
15秒前
鱼某某发布了新的文献求助10
15秒前
小兵完成签到,获得积分10
15秒前
33完成签到 ,获得积分10
16秒前
活泼的电脑完成签到,获得积分10
16秒前
星辰大海应助穆仰采纳,获得10
16秒前
strzeng发布了新的文献求助10
17秒前
糙糙科研完成签到,获得积分10
17秒前
18秒前
20秒前
海伯利安发布了新的文献求助10
20秒前
萨尼铁塔发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285299
求助须知:如何正确求助?哪些是违规求助? 4438487
关于积分的说明 13817325
捐赠科研通 4319766
什么是DOI,文献DOI怎么找? 2371149
邀请新用户注册赠送积分活动 1366693
关于科研通互助平台的介绍 1330152