A Digital Microfluidic Platform for the Microscale Production of Functional Immune Cell Therapies

微尺度化学 微流控 生产(经济) 免疫系统 纳米技术 计算机科学 生物 材料科学 免疫学 经济 数学 数学教育 宏观经济学
作者
Samuel R. Little,Niloufar Rahbari,Mehri Hajiaghayi,Fatemeh Gholizadeh,Fanny-Meï Cloarec-Ung,Joel Phillips,Hugo Sinha,Alison Hirukawa,David J.H.F. Knapp,Peter J. Darlington,Steve C. C. Shih
标识
DOI:10.1101/2024.09.03.611092
摘要

Abstract Genetically engineering human immune cells has been shown to be an effective approach for developing novel cellular therapies to treat a wide range of diseases. To expand the scope of these cellular therapies while solving persistent challenges, extensive research and development is still required. Electroporation has recently emerged as one of the most popular techniques for inserting biological payloads into human immune cells to perform genetic engineering. However, several recent studies have reported that electroporation can negatively impact cell functionality. Additionally, the requirement to use large amounts of cells and expensive payloads to achieve efficient delivery can drive up the costs of development efforts. Here we use a digital microfluidic enabled electroporation system (referred to as triDrop) and compare them against two state-of-the-art commercially available systems for the engineering of human T cells. We describe the ability to use triDrop for highly viable, highly efficient transfection while using substantially fewer cells and payload. Subsequently, we perform transcriptomic analysis on cells engineered with each of the three systems and show that electroporation with triDrop lead to less dysregulation of several functionally relevant pathways. Finally, in a direct comparison of immunotherapeutic functionality, we show that T cells engineered with triDrop have an improved ability to mount an immune response when presented with tumor cells. These results show that the triDrop platform is uniquely suited to produce functionally engineered immune cells while also reducing the costs of cell engineering compared to other commercially available systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助JLiu612采纳,获得10
1秒前
LHZ发布了新的文献求助10
2秒前
5秒前
科研通AI5应助LHZ采纳,获得10
6秒前
善学以致用应助111采纳,获得10
7秒前
7秒前
9秒前
医小邦完成签到 ,获得积分10
13秒前
健忘的沛蓝完成签到 ,获得积分10
15秒前
17秒前
19秒前
jzk发布了新的文献求助10
20秒前
最佳完成签到 ,获得积分10
21秒前
111发布了新的文献求助10
21秒前
21秒前
科研通AI5应助zbb采纳,获得10
21秒前
Xxuan完成签到,获得积分10
22秒前
wasiwan完成签到,获得积分10
23秒前
结实的寒梦完成签到,获得积分10
23秒前
陈豆豆完成签到,获得积分10
24秒前
srx完成签到,获得积分10
25秒前
sc发布了新的文献求助20
26秒前
朱可芯发布了新的文献求助10
27秒前
28秒前
落后寒凡完成签到 ,获得积分10
28秒前
Hello应助自由的大白采纳,获得10
29秒前
jzk完成签到,获得积分20
31秒前
爆米花应助坚定的怀蕾采纳,获得10
31秒前
和谐煜祺完成签到,获得积分10
31秒前
31秒前
jiangcy完成签到,获得积分10
32秒前
dspan发布了新的文献求助10
32秒前
36秒前
pangpang1992完成签到 ,获得积分10
37秒前
壹肆伍发布了新的文献求助10
37秒前
38秒前
niu完成签到,获得积分10
40秒前
LaTeXer给喜悦的白猫的求助进行了留言
42秒前
滴滴滴发布了新的文献求助30
43秒前
43秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835028
求助须知:如何正确求助?哪些是违规求助? 3377507
关于积分的说明 10498840
捐赠科研通 3096984
什么是DOI,文献DOI怎么找? 1705397
邀请新用户注册赠送积分活动 820539
科研通“疑难数据库(出版商)”最低求助积分说明 772123