Multifunctional Nano‐Conductive Hydrogels With High Mechanical Strength, Toughness and Fatigue Resistance as Self‐Powered Wearable Sensors and Deep Learning‐Assisted Recognition System

材料科学 自愈水凝胶 韧性 可穿戴计算机 纳米- 导电体 可穿戴技术 纳米技术 复合材料 计算机科学 嵌入式系统 高分子化学
作者
Yanqing Wang,Picheng Chen,Yu Ding,Penghao Zhu,Yuetao Liu,Chuanxing Wang,Chuanhui Gao
出处
期刊:Advanced Functional Materials [Wiley]
被引量:45
标识
DOI:10.1002/adfm.202409081
摘要

Abstract High mechanical strength, toughness, and fatigue resistance are essential to improve the reliability of conductive hydrogels for self‐powered sensing. However, achieving mutually exclusive properties simultaneously remains challenging. Hence, a novel directed interlocking strategy based on topological network structure and mechanical training is proposed to construct tough hydrogels by optimizing the network structure and modulating the orientation of molecular chains. Combining Zn 2+ crosslinked cellulose nanofibers (CNFs) and a polyacrylamide‐poly(vinyl alcohol) double‐network, the unique interlocked‐network structure exhibits an enhanced toughening effect due to hydrogen bonding and metal‐ligand interactions. The aligned nanocrystalline domains achieved by training further contribute to an increase in the toughness and fatigue thresholds. This innovative approach synergistically enhances the mechanical properties of the nano‐conductive hydrogel, achieving a maximum tensile strength of 4.98 MPa and a toughness of 48 MJ m −3 . Notably, the CNFs template with anchored polyaniline, when oriented through mechanical training, forms a unique directional conductive pathway, which significantly enhances the power output performance. Besides, a motion recognition system based on a self‐powered sensing device is designed with the assistance of deep learning techniques to accurately identify human motion behaviors. This work showcases a potentially transformative flexible electronic material for self‐powered sensing systems and intelligent recognition systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
like10spirit发布了新的文献求助10
刚刚
1秒前
生动梦松发布了新的文献求助200
1秒前
完美世界应助momucy采纳,获得10
1秒前
1秒前
chunhuahuang完成签到,获得积分10
1秒前
果蝇之母完成签到,获得积分10
2秒前
000完成签到,获得积分10
2秒前
欣喜的寒珊完成签到,获得积分20
2秒前
2秒前
2秒前
Owen应助耶斯耶斯采纳,获得10
2秒前
哦耶zyy完成签到,获得积分10
3秒前
3秒前
小蘑菇应助lzcnextdoor采纳,获得30
3秒前
000发布了新的文献求助10
4秒前
4秒前
春锅锅完成签到,获得积分10
4秒前
5秒前
DDDD发布了新的文献求助20
6秒前
呜呜发布了新的文献求助10
6秒前
吴彦祖发布了新的文献求助10
6秒前
优秀的zzw完成签到,获得积分10
6秒前
睁正正完成签到 ,获得积分10
7秒前
华仔应助Ar采纳,获得10
7秒前
Naaa完成签到,获得积分10
7秒前
PandaMan发布了新的文献求助10
8秒前
8秒前
8秒前
脱氧核唐小姐完成签到,获得积分10
9秒前
10秒前
10秒前
aga发布了新的文献求助10
10秒前
11秒前
柏林寒冬应助目分采纳,获得10
11秒前
猪猪hero应助luo采纳,获得10
12秒前
青云完成签到,获得积分10
12秒前
12秒前
12秒前
老木虫发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
Why America Can't Retrench (And How it Might) 400
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4689158
求助须知:如何正确求助?哪些是违规求助? 4061737
关于积分的说明 12558010
捐赠科研通 3759159
什么是DOI,文献DOI怎么找? 2076091
邀请新用户注册赠送积分活动 1104760
科研通“疑难数据库(出版商)”最低求助积分说明 983769