Unsupervised Deep Hashing With Fine-Grained Similarity-Preserving Contrastive Learning for Image Retrieval

散列函数 计算机科学 人工智能 相似性(几何) 局部敏感散列 模式识别(心理学) 水准点(测量) 图像检索 成对比较 特征学习 一致性(知识库) 特征哈希 最近邻搜索 哈希表 图像(数学) 双重哈希 计算机安全 大地测量学 地理
作者
Hu Cao,Lei Huang,Jie Nie,Zhiqiang Wei
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (5): 4095-4108 被引量:5
标识
DOI:10.1109/tcsvt.2023.3320444
摘要

Unsupervised deep hashing has demonstrated significant advancements with the development of contrastive learning. However, most of previous methods have been hindered by insufficient similarity mining using global-only image representations. This has led to interference from background or non-interest objects during similarity reconstruction and contrastive learning. To address this limitation, we propose a novel unsupervised deep hashing framework named Fine-grained Similarity-preserving Contrastive learning Hashing (FSCH), which explores fine-grained semantic similarity among different images and their augmented views more comprehensively. It mainly comprises two modules: the global-local fine-grained similarity consistency preservation module and the local fine-grained similarity contrast preservation module. Specifically, we reconstruct local pairwise similarity structures by matching fine-grained patches, in conjunction with global similarity structures based on global hash codes cosine similarity, to generate hash codes with the ability to preserve global-local similarity consistency. Moreover, the preservation of local fine-grained similarity among augmented views is accomplished through the common regional features mutual representation between patches, then we enhance the discriminability of hash codes by mitigating the potential features difference during contrastive learning. Experimental results on four benchmark datasets demonstrate that our FSCH achieves an excellent retrieval performance compared to state-of-the-art unsupervised hashing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助现代曼香采纳,获得10
2秒前
高海龙完成签到 ,获得积分10
3秒前
令狐觅双完成签到,获得积分10
4秒前
4秒前
hans完成签到,获得积分10
4秒前
5秒前
5秒前
打打应助啦啦啦采纳,获得10
6秒前
xuanxuan发布了新的文献求助10
7秒前
dennisysz发布了新的文献求助10
8秒前
9秒前
尉迟苑博发布了新的文献求助10
11秒前
酷波er应助小茂采纳,获得10
14秒前
佳佳完成签到,获得积分10
15秒前
星火完成签到,获得积分10
16秒前
陆晓亦完成签到,获得积分10
16秒前
16秒前
脑洞疼应助fcgcgfcgf采纳,获得10
16秒前
xuanxuan完成签到,获得积分10
17秒前
18秒前
19秒前
听风飘逸发布了新的文献求助10
21秒前
Jasper应助科研通管家采纳,获得20
21秒前
21秒前
华仔应助科研通管家采纳,获得10
21秒前
情怀应助科研通管家采纳,获得10
22秒前
wanci应助科研通管家采纳,获得10
22秒前
丘比特应助科研通管家采纳,获得10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
华仔应助科研通管家采纳,获得20
22秒前
SciGPT应助科研通管家采纳,获得30
22秒前
夕诙应助科研通管家采纳,获得30
22秒前
思源应助科研通管家采纳,获得10
22秒前
英姑应助科研通管家采纳,获得10
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
我是老大应助科研通管家采纳,获得10
22秒前
大个应助科研通管家采纳,获得10
22秒前
赘婿应助CH采纳,获得10
23秒前
清仔发布了新的文献求助10
25秒前
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777369
求助须知:如何正确求助?哪些是违规求助? 3322759
关于积分的说明 10211549
捐赠科研通 3038120
什么是DOI,文献DOI怎么找? 1667117
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103