Classification of birdsong spectrograms based on DR-ACGAN and dynamic convolution

光谱图 计算机科学 人工智能 核(代数) 模式识别(心理学) 卷积(计算机科学) 残余物 人口 机器学习 算法 数学 人工神经网络 组合数学 社会学 人口学
作者
Yixing Fu,Chunjiang Yu,Yan Zhang,Danjv Lv,Yue Yin,Jing Lü,Dan Lv
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:77: 102250-102250 被引量:6
标识
DOI:10.1016/j.ecoinf.2023.102250
摘要

Birdsongs are highly valuable for bird studies as they provide insights into various aspects such as species distribution, population structures, and habitat. Recognizing birdsongs plays a crucial role in bird conservation efforts. However, manually collecting a large number of birdsongs from the natural environment is expensive and time-consuming. Moreover, using limited birdsong data often results in low classification accuracy of the models. To better identification of birdsongs, we utilize wavelet transform(WT) to convert them into spectrograms, which contain abundant energy and frequency information. Effectively extracting these features is vital to improve the classification accuracy of the model. To address this problem, we proposed an improved ACGAN model based on residual structure and attention mechanism named DR-ACGAN, which achieved stable training of the model and high-quality generated birdsong spectrograms. The dynamic convolution kernel is then fused with MobileNetV2, ResNet18, and VGG16 models and trained on different datasets, which used different ways of mixing the generated and original spectrograms. The experimental results show that the classification accuracy after data augmentation improves by 6.66%, 4.35%, and 2.29% compared to the original dataset in the three base classifiers. After adding dynamic convolutional kernel structure, the accuracy is further improved by 1.68%, 0.67%, and 0.38% on average which the VGG16 model achieves the highest accuracy of 97.60%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传统的怀薇完成签到 ,获得积分10
1秒前
blueblue发布了新的文献求助10
1秒前
1秒前
蓝胖子完成签到 ,获得积分10
1秒前
2秒前
xh发布了新的文献求助10
2秒前
派大凯不是俺完成签到,获得积分10
2秒前
3秒前
万木春完成签到 ,获得积分10
3秒前
lqc发布了新的文献求助10
3秒前
科研通AI5应助俭朴的期待采纳,获得10
3秒前
HYLJ发布了新的文献求助10
5秒前
美好斓发布了新的文献求助10
5秒前
哈哈哈哈哈哈哈完成签到 ,获得积分20
5秒前
7秒前
爆米花应助blueblue采纳,获得10
9秒前
9秒前
13秒前
科研通AI5应助999采纳,获得10
13秒前
诺诺完成签到,获得积分10
14秒前
16秒前
遂安完成签到,获得积分10
17秒前
QQWRV完成签到,获得积分10
17秒前
yejian完成签到,获得积分10
18秒前
keroro完成签到,获得积分10
20秒前
21秒前
22秒前
zcious发布了新的文献求助10
23秒前
XSB完成签到,获得积分10
24秒前
Waki完成签到 ,获得积分10
24秒前
25秒前
明亮无颜发布了新的文献求助10
25秒前
25秒前
酷炫诗筠完成签到,获得积分10
26秒前
橙花完成签到 ,获得积分10
26秒前
馨韵完成签到,获得积分10
27秒前
脑洞疼应助元谷雪采纳,获得10
28秒前
zhl发布了新的文献求助10
28秒前
29秒前
周周完成签到 ,获得积分10
29秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843657
求助须知:如何正确求助?哪些是违规求助? 3385947
关于积分的说明 10543274
捐赠科研通 3106748
什么是DOI,文献DOI怎么找? 1711147
邀请新用户注册赠送积分活动 823921
科研通“疑难数据库(出版商)”最低求助积分说明 774390