任务(项目管理)
电池(电)
计算机科学
学习迁移
构造(python库)
人工智能
机器学习
功能(生物学)
工程类
功率(物理)
物理
系统工程
量子力学
进化生物学
生物
程序设计语言
作者
Yang Ge,Jiaxin Ma,Guodong Sun
标识
DOI:10.1016/j.est.2023.108494
摘要
In this paper, we propose an adaptive transfer learning method for predicting battery health status. We construct a multi-task transfer learning framework to address the problem of transferring battery health status predictions across different usage scenarios. To overcome the challenge of determining the optimal weight for different task loss functions, we introduce an adaptive optimization method that automatically assigns the optimal weight to the multi-task objective function. Our experiments on lithium-ion battery data from Huazhong University of Science and Technology show that our proposed method outperforms other typical prediction methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI