Frequency-aware feature aggregation network with dual-task consistency for RGB-T salient object detection

人工智能 RGB颜色模型 计算机科学 特征(语言学) 模式识别(心理学) 突出 计算机视觉 语言学 哲学
作者
Heng Zhou,Chunna Tian,Zhenxi Zhang,Chengyang Li,Yongqiang Xie,Zhongbo Li
出处
期刊:Pattern Recognition [Elsevier]
卷期号:146: 110043-110043 被引量:40
标识
DOI:10.1016/j.patcog.2023.110043
摘要

RGB-Thermal salient object detection (SOD) aims to merge two spectral images to segment visually appealing objects. Current methods primarily extract salient object information in the pixel perspective. However, biological and psychological research indicates notable frequency sensitivity of the human visual system (HVS). The high-frequency (HF) and low-frequency (LF) information in images are processed by different neural channels, which has been overlooked in SOD. In this study, we argue that the objective of RGB-T SOD is not only to enhance feature representation in the pixel-aware but also to emulate human visual mechanisms. To our best knowledge, we explore RGB-T SOD from the frequency perspective for the first time. Specifically, we first present a frequency-aware multi-spectral feature aggregation module (FMFA) to exploit the separability and complementarity of frequency-aware features, generating and making full use of LF and HF cues. FMFA improves the feature representation of RGB-T from the frequency perspective and provides stronger frequency cues for boundary auxiliary tasks. Then, we develop an HF-guided signed distance map prediction module (HF-SDM) with dual-task consistency to effectively alleviate the coarse mask caused by blur boundary. HF-SDM employs the geometric relationship of objects which boosts the interaction between salient regions and boundaries. As a result, the model can gain sharper boundaries for salient objects. Finally, we propose a frequency-aware feature aggregation network (FFANet) incorporated with dual-task learning. Extensive experiments on RGB-T SOD datasets demonstrate that our proposed method outperforms other state-of-the-art methods. Ablation studies and visualizations further verify the effectiveness and interpretability of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
橘子发布了新的文献求助10
2秒前
2秒前
敏感的博超完成签到 ,获得积分10
3秒前
3秒前
gucci发布了新的文献求助10
4秒前
小杭776应助会撒娇的白曼采纳,获得10
4秒前
R18686226306发布了新的文献求助10
4秒前
4秒前
Ztx完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助30
6秒前
一见你就笑完成签到 ,获得积分10
7秒前
妮妮在搜索完成签到 ,获得积分10
9秒前
顾矜应助西红柿采纳,获得10
9秒前
Yet_S完成签到,获得积分10
10秒前
Zircon完成签到 ,获得积分10
10秒前
星辰大海应助R18686226306采纳,获得10
11秒前
黎明森发布了新的文献求助10
11秒前
美女完成签到,获得积分10
12秒前
13秒前
13秒前
深情安青应助L同学采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
燕然都护完成签到,获得积分10
15秒前
坚强雪碧完成签到,获得积分10
15秒前
科研通AI6.1应助hhh采纳,获得10
15秒前
烟花应助康K采纳,获得10
16秒前
17秒前
Mq发布了新的文献求助10
18秒前
Alan弟弟发布了新的文献求助30
19秒前
zero完成签到,获得积分10
19秒前
香蕉觅云应助何二花采纳,获得10
19秒前
十七发布了新的文献求助10
21秒前
Hello应助zimuxinxin采纳,获得10
21秒前
又听风雨发布了新的文献求助10
21秒前
21秒前
Hello应助鳗鱼如松采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5738291
求助须知:如何正确求助?哪些是违规求助? 5376432
关于积分的说明 15337395
捐赠科研通 4881413
什么是DOI,文献DOI怎么找? 2623477
邀请新用户注册赠送积分活动 1572176
关于科研通互助平台的介绍 1529040