Winter wheat yield prediction using integrated Landsat 8 and Sentinel-2 vegetation index time-series data and machine learning algorithms

归一化差异植被指数 时间序列 随机森林 支持向量机 机器学习 植被(病理学) 系列(地层学) 算法 产量(工程) 作物产量 预测建模 遥感 叶面积指数 计算机科学 农学 地理 生物 医学 病理 古生物学 冶金 材料科学
作者
Haiyang Zhang,Yao Zhang,Kaidi Liu,Lan Shu,Tinyao Gao,Minzan Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:213: 108250-108250 被引量:17
标识
DOI:10.1016/j.compag.2023.108250
摘要

Timely and accurate forecasting of winter wheat yield is important to crop management, food security, and sustainable agricultural development. Unfortunately, the process of predicting winter wheat yield using satellite time series data often fails to capture complete and critical information about the crop growth process, which can restrict the accuracy of crop yield predictions. To overcome this challenge, it is necessary to increase the frequency of monitoring crop growth dynamics, identify suitable vegetation index (VI), and determine the optimal prediction model for time-series remote sensing data. In this study, we propose proposes a novel method for predicting winter wheat yield using integrated Landsat 8 (L8) and Sentinel-2 (S2) vegetation index time-series data and machine learning algorithms. Firstly, the integrated L8 and S2 dataset was obtained through the steps of cloud masking, re-sampling, re-projection, BRDF correction, and band adjustment. Then, the optimal VI was determined based on the association between the growth characteristics of winter wheat and the time-series characteristic curves of each VI. Subsequently, we employed Bayesian optimized CatBoost (BO-CatBoost) regression model to predict winter wheat yield, and compared this method with three other data-driven methods, including least absolute shrinkage and selection operator (LASSO), support vector regression (SVM), and random forest (RF). Our results showed that the winter wheat yield prediction accuracies reached the best performance using integrated Landsat 8 and Sentinel-2 WDRVI (Wide Dynamic Range Vegetation Index) time-series data and BO-CatBoost model. The R2 values were 0.70, 0.63, and 0.68, and RMSE values were 0.62, 0.73, and 0.62 t/ha for the years 2019 to 2021, respectively. In addition, acceptable accuracy was obtained for yield prediction in 2021 based on the model trained with historical data from 2019 and 2020. Moreover, this study demonstrated the result that winter wheat yield could be predicted about 40 days earlier using the proposed method. Finally, results showed that the harmonized data improved the yield estimation accuracies by a factor of 1.52, 1.29, and 1.13 compared with single S2 dataset for years 2019–2021. Various experiments demonstrated that the proposed method could effectively estimate and predict winter wheat yield data with good accuracy and robustness. This study provides technical support for improving the accuracy of winter wheat yield prediction and has the potential to be extended to yield estimation for other crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TT发布了新的文献求助10
刚刚
科研通AI5应助宇文向雪采纳,获得10
刚刚
安详的断缘完成签到,获得积分10
1秒前
abcd_1067完成签到,获得积分10
3秒前
大意的小凝完成签到,获得积分10
5秒前
思想家完成签到,获得积分10
5秒前
无花果应助lee采纳,获得10
7秒前
优雅的迎彤完成签到 ,获得积分10
7秒前
星辰大海应助qqt采纳,获得10
8秒前
9秒前
Vivian完成签到 ,获得积分10
11秒前
12秒前
12秒前
VanessaDY发布了新的文献求助10
13秒前
研友_VZG7GZ应助遇见采纳,获得30
14秒前
14秒前
CodeCraft应助开放的水壶采纳,获得10
15秒前
乐乐应助abc123采纳,获得10
16秒前
852应助jnuszjz采纳,获得10
16秒前
西西发布了新的文献求助10
17秒前
17秒前
淡然冬灵发布了新的文献求助10
18秒前
18秒前
赘婿应助高高雅青采纳,获得10
19秒前
南冥完成签到 ,获得积分10
20秒前
21秒前
Timmy发布了新的文献求助10
21秒前
22秒前
24秒前
25秒前
研友_8Y26PL完成签到,获得积分10
25秒前
lee完成签到,获得积分10
27秒前
jnuszjz发布了新的文献求助10
28秒前
皮凡完成签到,获得积分10
28秒前
温柔半梦完成签到,获得积分20
29秒前
甲乙发布了新的文献求助10
29秒前
29秒前
lee发布了新的文献求助10
30秒前
万能图书馆应助Timmy采纳,获得10
30秒前
西西完成签到,获得积分10
30秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799862
求助须知:如何正确求助?哪些是违规求助? 3345103
关于积分的说明 10323728
捐赠科研通 3061700
什么是DOI,文献DOI怎么找? 1680492
邀请新用户注册赠送积分活动 807093
科研通“疑难数据库(出版商)”最低求助积分说明 763462