Predicting the Composition and Mechanical Properties of Seaweed Bioplastics from the Scientific Literature: A Machine Learning Approach for Modeling Sparse Data

生物塑料 生化工程 计算机科学 随机森林 决策树 机器学习 Boosting(机器学习) 预测建模 聚类分析 人工智能 工程类 废物管理
作者
Simón Faba,Valentina Hernández-Muñoz,Charlene M. Smith,María José Galotto,Alysia Garmulewicz
出处
期刊:Applied sciences [MDPI AG]
卷期号:13 (21): 11841-11841 被引量:8
标识
DOI:10.3390/app132111841
摘要

The design of biodegradable polymeric materials is of increasing scientific interest due to accelerating levels of plastics pollution. One area of increasing interest is the design of biodegradable polymer films based on seaweed as a raw material. The goal of the study is to explore whether machine learning techniques can be used to predict the properties of unknown compositions based on existing data from the literature. Clustering algorithms are used, which show how some ingredients components at certain concentration levels alter the mechanical properties of the films. Robust regression algorithms with three popular models, namely decision tree, random forest, and gradient boosting. Their predictive capabilities are compared, resulting in the random forest algorithm being the most stable with the greatest predictive capacity. These analyses offer a decision support system for biomaterials manufacturing and experimentation. The results and conclusions of the study indicate that bioplastics made from seaweed have promising potential as a sustainable alternative to traditional plastics, discovering interesting additives to improve the performance of biopolymers. In addition, the machine learning approaches used provide effective tools for analyzing and predicting the properties of these materials in structured but highly sparse data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超帅远望发布了新的文献求助10
刚刚
fengge发布了新的文献求助10
1秒前
1秒前
打打应助CT采纳,获得10
1秒前
1秒前
2秒前
天天快乐应助Yxian采纳,获得10
2秒前
2秒前
SciGPT应助a成采纳,获得10
3秒前
今后应助苗硕恒采纳,获得10
3秒前
3秒前
5秒前
5秒前
科研通AI6应助陈Y采纳,获得30
5秒前
6秒前
宁宁发布了新的文献求助10
6秒前
Francis发布了新的文献求助10
6秒前
冷傲映冬发布了新的文献求助10
6秒前
6秒前
冷酷向薇发布了新的文献求助10
6秒前
迷路的寄风完成签到,获得积分10
7秒前
tom发布了新的文献求助10
7秒前
7秒前
kkkkk完成签到,获得积分10
7秒前
小敏完成签到,获得积分10
7秒前
SMU_mr_student完成签到,获得积分10
7秒前
8秒前
高贵振家发布了新的文献求助10
8秒前
越努力越心酸完成签到,获得积分10
8秒前
sunny完成签到,获得积分10
8秒前
lluuoo发布了新的文献求助10
8秒前
8秒前
酷波er应助学林书屋采纳,获得30
8秒前
丘比特应助kk酱采纳,获得10
8秒前
9秒前
科研通AI6应助111采纳,获得10
9秒前
9秒前
ZSH发布了新的文献求助10
9秒前
大模型应助温暖伟祺采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546362
求助须知:如何正确求助?哪些是违规求助? 4632240
关于积分的说明 14625801
捐赠科研通 4573926
什么是DOI,文献DOI怎么找? 2507874
邀请新用户注册赠送积分活动 1484511
关于科研通互助平台的介绍 1455714