Multimodal deep learning as a next challenge in nutrition research: tailoring fermented dairy products based on cytidine diphosphate-diacylglycerol synthase-mediated lipid metabolism

脂质代谢 二酰甘油激酶 组学 生物 发酵 计算生物学 生物化学 生物技术 食品科学 生物信息学 信号转导 蛋白激酶C
作者
Xixuan Wu,Wei Jia
出处
期刊:Critical Reviews in Food Science and Nutrition [Taylor & Francis]
卷期号:: 1-12 被引量:8
标识
DOI:10.1080/10408398.2023.2248633
摘要

Deep learning is evolving in nutritional epidemiology to address challenges including precise nutrition and data-driven disease modeling. Fermented dairy products consumption as the implementation of specific dietary priority contributes to a lower risk of all-cause mortality, cardiovascular disease, and obesity. Various lipid types play different roles in cardiometabolic health and fermentation process changes the lipid profile in dairy products. Leveraging the power of multiple biological datasets can provide mechanistic insights into how proteins impact lipid pathways, and establish connections among fermentation-lipid biomarkers-protein. The recent leap of deep learning has been performed in food category recognition, agro-food freshness detection, and food flavor prediction and regulation. The proposed multimodal deep learning method includes four steps: (i) Forming data matrices based on data generated from different omics layers. (ii) Decomposing high-dimensional omics data according to self-attention mechanism. (iii) Constructing View Correlation Discovery Network to learn the cross-omics correlations and integrate different omics datasets. (iv) Depicting a biological network for lipid metabolism-centered quantitative multi-omics data analysis. Relying on the cytidine diphosphate-diacylglycerol synthase-mediated lipid metabolism regulates the glycerophospholipid composition of fermented dairy effectively. Innovative processing strategies including ohmic heating and pulsed electric field improve the sensory qualities and nutritional characteristics of the products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助Dceer采纳,获得10
2秒前
5秒前
5秒前
明理新晴发布了新的文献求助10
5秒前
6秒前
8秒前
科研通AI5应助梁三岁采纳,获得10
9秒前
龙须酥完成签到,获得积分10
10秒前
深情安青应助wu采纳,获得10
12秒前
Silieze完成签到,获得积分10
14秒前
YY发布了新的文献求助10
15秒前
vic完成签到,获得积分10
15秒前
16秒前
香蕉觅云应助vvvvvv采纳,获得10
17秒前
hjyylab应助YY采纳,获得10
19秒前
Xieyusen发布了新的文献求助10
21秒前
科研通AI5应助luoshikun采纳,获得10
21秒前
21秒前
李爱国应助科研通管家采纳,获得10
22秒前
Jasper应助科研通管家采纳,获得10
22秒前
Hello应助科研通管家采纳,获得10
22秒前
所所应助科研通管家采纳,获得30
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
研友_VZG7GZ应助科研通管家采纳,获得10
23秒前
23秒前
酷波er应助科研通管家采纳,获得30
23秒前
田様应助科研通管家采纳,获得10
23秒前
lujianqi完成签到,获得积分10
23秒前
在水一方应助科研通管家采纳,获得10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
ygr应助科研通管家采纳,获得20
23秒前
23秒前
彭于晏应助科研通管家采纳,获得10
23秒前
23秒前
sciq完成签到,获得积分10
24秒前
25秒前
小二郎应助vvvvvv采纳,获得10
26秒前
28秒前
Kitty完成签到,获得积分10
28秒前
科研通AI5应助美好的鹏笑采纳,获得10
28秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843872
求助须知:如何正确求助?哪些是违规求助? 3386212
关于积分的说明 10544405
捐赠科研通 3107034
什么是DOI,文献DOI怎么找? 1711369
邀请新用户注册赠送积分活动 824049
科研通“疑难数据库(出版商)”最低求助积分说明 774416