Machine learning and deep learning for safety applications: Investigating the intellectual structure and the temporal evolution

人气 背景(考古学) 工作流程 多样性(控制论) 计算机科学 深度学习 领域(数学) 数据科学 人工智能 可靠性(半导体) 风险分析(工程) 工程类 心理学 业务 社会心理学 古生物学 功率(物理) 物理 数学 量子力学 数据库 纯数学 生物
作者
Leonardo Leoni,Ahmad BahooToroody,Mohammad Mahdi Abaei,Alessandra Cantini,Farshad BahooToroody,Filippo De Carlo
出处
期刊:Safety Science [Elsevier BV]
卷期号:170: 106363-106363 被引量:20
标识
DOI:10.1016/j.ssci.2023.106363
摘要

Over the last decades, safety requirements have become of primary concern. In the context of safety, several strategies could be pursued in many engineering fields. Moreover, many techniques have been proposed to deal with safety, risk, and reliability matters, such as Machine Learning (ML) and Deep Learning (DL). ML and DL are characterised by a high variety of algorithms, adaptable for different purposes. This generated wide and fragmented literature on ML and DL for safety purposes, moreover, literature review and bibliometric studies of the past years mainly focus on a single research area or application field. Thus, this paper aims to provide a holistic understanding of the research on this topic through a Systematic Bibliometric Analysis (SBA), along with proposing a viable option to conduct SBAs. The focus is on investigating the main research areas, application fields, relevant authors and studies, and temporal evolution. It emerged that rotating equipment, structural health monitoring, batteries, aeroengines, and turbines are popular fields. Moreover, the results depicted an increase in popularity of DL, along with new approaches such as deep reinforcement learning through the past four years. The proposed workflow for SBA has the potential to benefit researchers from multiple disciplines, beyond safety science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
adastra发布了新的文献求助10
1秒前
phoebe发布了新的文献求助10
2秒前
朱豪豪发布了新的文献求助10
2秒前
2秒前
执着梦山发布了新的文献求助10
3秒前
3秒前
二行完成签到,获得积分10
4秒前
jinyu发布了新的文献求助10
4秒前
4秒前
自由完成签到,获得积分20
4秒前
5秒前
SciGPT应助长生采纳,获得10
5秒前
5秒前
ooh完成签到,获得积分10
6秒前
HJJHJH发布了新的文献求助30
6秒前
chen完成签到,获得积分10
6秒前
自由发布了新的文献求助10
6秒前
祁依欧欧完成签到,获得积分10
7秒前
CipherSage应助zhao采纳,获得30
7秒前
田様应助三石呦423采纳,获得10
7秒前
小波应助不安的夜柳采纳,获得20
8秒前
Orange应助hqq采纳,获得10
9秒前
安小野发布了新的文献求助10
9秒前
852应助海洋采纳,获得10
9秒前
10秒前
汉堡包应助aa采纳,获得10
10秒前
Hello应助大饼卷肉采纳,获得10
10秒前
lzy完成签到,获得积分10
10秒前
FashionBoy应助余生采纳,获得10
10秒前
斯文败类应助大饼卷肉采纳,获得10
11秒前
李健的小迷弟应助菜菜Cc采纳,获得10
11秒前
曦月发布了新的文献求助10
11秒前
橙子完成签到,获得积分10
11秒前
传奇3应助meo采纳,获得30
11秒前
VVhahaha完成签到,获得积分10
12秒前
blaiteness完成签到 ,获得积分10
12秒前
adastra完成签到,获得积分10
12秒前
13秒前
舒适虔完成签到,获得积分10
13秒前
13秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805783
求助须知:如何正确求助?哪些是违规求助? 3350709
关于积分的说明 10350220
捐赠科研通 3066573
什么是DOI,文献DOI怎么找? 1683863
邀请新用户注册赠送积分活动 809190
科研通“疑难数据库(出版商)”最低求助积分说明 765407