SpectralDiff: A Generative Framework for Hyperspectral Image Classification With Diffusion Models

高光谱成像 计算机科学 空间分析 模式识别(心理学) 人工智能 样品(材料) 数据挖掘 扩散 像素 遥感 地理 化学 物理 色谱法 热力学
作者
Ning Chen,Jun Yue,Leyuan Fang,Shaobo Xia
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:46
标识
DOI:10.1109/tgrs.2023.3310023
摘要

Hyperspectral Image (HSI) classification is an important issue in remote sensing field with extensive applications in earth science. In recent years, a large number of deep learning-based HSI classification methods have been proposed. However, existing methods have limited ability to handle high-dimensional, highly redundant, and complex data, making it challenging to capture the spectral-spatial distributions of data and relationships between samples. To address this issue, we propose a generative framework for HSI classification with diffusion models (SpectralDiff) that effectively mines the distribution information of high-dimensional and highly redundant data by iteratively denoising and explicitly constructing the data generation process, thus better reflecting the relationships between samples. The framework consists of a spectral-spatial diffusion module, and an attention-based classification module. The spectral-spatial diffusion module adopts forward and reverse spectral-spatial diffusion processes to achieve adaptive construction of sample relationships without requiring prior knowledge of graphical structure or neighborhood information. It captures spectral-spatial distribution and contextual information of objects in HSI and mines unsupervised spectral-spatial diffusion features within the reverse diffusion process. Finally, these features are fed into the attention-based classification module for per-pixel classification. The diffusion features can facilitate cross-sample perception via reconstruction distribution, leading to improved classification performance. Experiments on three public HSI datasets demonstrate that the proposed method can achieve better performance than state-of-the-art methods. For the sake of reproducibility, the source code of SpectralDiff will be publicly available at https://github.com/chenning0115/SpectralDiff.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
不吃番茄发布了新的文献求助10
刚刚
宁戎完成签到,获得积分10
刚刚
c123完成签到 ,获得积分10
刚刚
dounai发布了新的文献求助20
刚刚
1秒前
1秒前
谦让的冷珍完成签到,获得积分10
1秒前
称心的冬寒完成签到,获得积分10
1秒前
2秒前
luckygg完成签到 ,获得积分10
2秒前
yangching完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
Irissun完成签到,获得积分10
3秒前
我是老大应助15945采纳,获得10
3秒前
LYDZ2完成签到,获得积分10
3秒前
3秒前
芯止谭轩发布了新的文献求助10
4秒前
Summer完成签到,获得积分10
4秒前
欣喜的人龙完成签到 ,获得积分10
4秒前
4秒前
热心的明辉完成签到,获得积分10
5秒前
5秒前
TEY完成签到,获得积分10
5秒前
5秒前
生命科学完成签到 ,获得积分10
5秒前
风中龙猫完成签到,获得积分10
6秒前
老鱼吹浪完成签到,获得积分10
6秒前
求助人员发布了新的文献求助80
6秒前
仁者无敌完成签到,获得积分10
6秒前
7秒前
7秒前
wwyy驳回了cc应助
7秒前
Faded完成签到 ,获得积分10
7秒前
不吃番茄完成签到,获得积分10
7秒前
8秒前
陆人甲发布了新的文献求助30
8秒前
8秒前
舟夏完成签到 ,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5716355
求助须知:如何正确求助?哪些是违规求助? 5239987
关于积分的说明 15277764
捐赠科研通 4866839
什么是DOI,文献DOI怎么找? 2613212
邀请新用户注册赠送积分活动 1563308
关于科研通互助平台的介绍 1520881