SpectralDiff: A Generative Framework for Hyperspectral Image Classification With Diffusion Models

高光谱成像 计算机科学 空间分析 模式识别(心理学) 人工智能 样品(材料) 数据挖掘 扩散 像素 遥感 地理 化学 物理 色谱法 热力学
作者
Ning Chen,Jun Yue,Leyuan Fang,Shaobo Xia
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:46
标识
DOI:10.1109/tgrs.2023.3310023
摘要

Hyperspectral Image (HSI) classification is an important issue in remote sensing field with extensive applications in earth science. In recent years, a large number of deep learning-based HSI classification methods have been proposed. However, existing methods have limited ability to handle high-dimensional, highly redundant, and complex data, making it challenging to capture the spectral-spatial distributions of data and relationships between samples. To address this issue, we propose a generative framework for HSI classification with diffusion models (SpectralDiff) that effectively mines the distribution information of high-dimensional and highly redundant data by iteratively denoising and explicitly constructing the data generation process, thus better reflecting the relationships between samples. The framework consists of a spectral-spatial diffusion module, and an attention-based classification module. The spectral-spatial diffusion module adopts forward and reverse spectral-spatial diffusion processes to achieve adaptive construction of sample relationships without requiring prior knowledge of graphical structure or neighborhood information. It captures spectral-spatial distribution and contextual information of objects in HSI and mines unsupervised spectral-spatial diffusion features within the reverse diffusion process. Finally, these features are fed into the attention-based classification module for per-pixel classification. The diffusion features can facilitate cross-sample perception via reconstruction distribution, leading to improved classification performance. Experiments on three public HSI datasets demonstrate that the proposed method can achieve better performance than state-of-the-art methods. For the sake of reproducibility, the source code of SpectralDiff will be publicly available at https://github.com/chenning0115/SpectralDiff.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
水仙完成签到 ,获得积分10
1秒前
1秒前
zhuzhu完成签到,获得积分10
1秒前
瑾瑜匿瑕完成签到,获得积分20
2秒前
Yuri完成签到,获得积分10
3秒前
wlei9534发布了新的文献求助30
3秒前
4秒前
酷酷的晓旋完成签到,获得积分10
4秒前
浮游应助李敏之采纳,获得10
5秒前
萧萧完成签到,获得积分10
5秒前
调皮橘子发布了新的文献求助10
5秒前
嘻嘻嘻发布了新的文献求助30
6秒前
6秒前
科研通AI6应助淡淡半莲采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
QiongYin_123完成签到 ,获得积分10
8秒前
8秒前
十五发布了新的文献求助10
9秒前
小慧儿完成签到 ,获得积分10
12秒前
13秒前
不怕困难发布了新的文献求助10
13秒前
Jasper应助十五采纳,获得10
13秒前
精明凡双完成签到,获得积分10
14秒前
FashionBoy应助susu采纳,获得10
14秒前
科研通AI2S应助Danielle_zx采纳,获得10
15秒前
16秒前
bkagyin应助张无缺采纳,获得10
19秒前
19秒前
19秒前
眼睛大樱桃完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
赘婿应助yi采纳,获得10
25秒前
26秒前
平常的如曼完成签到,获得积分10
27秒前
大川给llLiz_tung的求助进行了留言
27秒前
susu发布了新的文献求助10
29秒前
张荣宇发布了新的文献求助10
31秒前
hzs完成签到,获得积分10
31秒前
123完成签到,获得积分20
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5011650
求助须知:如何正确求助?哪些是违规求助? 4253023
关于积分的说明 13252960
捐赠科研通 4055663
什么是DOI,文献DOI怎么找? 2218299
邀请新用户注册赠送积分活动 1227935
关于科研通互助平台的介绍 1150088