Multi-level feature fusion capsule network with self-attention for facial expression recognition

人工智能 计算机科学 面部表情 模式识别(心理学) 特征提取 特征(语言学) 计算机视觉 面子(社会学概念) 面部识别系统 表达式(计算机科学) 哲学 语言学 社会科学 社会学 程序设计语言
作者
Zhiji Huang,Songsen Yu,Jun Liang
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:32 (02) 被引量:1
标识
DOI:10.1117/1.jei.32.2.023038
摘要

Different from generic image classification, fine-grained classification, such as facial expression classification, in which multiple expressions share inherently similar underlying facial appearances, may show a small difference between facial expression classes. Unlike lab-controlled data, facial expressions from natural scenes have rich forms of the same expression due to the diversity of subjects and the complexity of real-world conditions, and as a result, facial expressions may have large differences among samples within the same class. Moreover, there is little difference between facial expressions, and facial expressions are displayed simultaneously through various facial regions, which require us to encode the feature of multiple key regions, forming high-order interactive information. To address the aforementioned problems, we design an enhanced capsule network based on multi-level feature fusion attention mechanism, which is comprised of four critical components: multi-level feature extraction module (MFEM), multi-level attention module (MAM), multi-level capsule attention fusion module (MCAFM), and reconstruction module (RM). The MFEM collects the low-level, middle-level, and high-level features from the input image, therefore lowering the high-level convolution layer’s susceptibility to blurred image and the problem of pose variation. The MAM directs the network’s attention to the most significant features in different levels of image features and can assist the network in ignoring blurred, occluded, and irrelevant features and incorporating them into our self-attention center loss function to compress the element distribution in the same class. The MCAFM preserves the attributes of each face region (such as location, size, and direction) by transferring the features into capsules in preparation for the eventual creation of the dynamic routing mechanism, which can resolve the problem of image rotation on FER in the wild. Simultaneously, the capsule features of distinct areas are combined to provide higher-order overall feature information, enhancing the model’s capacity to discriminate between different kinds of expressions. The RM reconstructs the image and calculates the difference between the reconstructed image and the original input image. Our model outperforms a large number of current methods on two public datasets, RAF-DB and SFEW.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1799157990发布了新的文献求助20
刚刚
芋圆发布了新的文献求助10
刚刚
1秒前
1秒前
动听葵阴发布了新的文献求助10
1秒前
2秒前
彭于晏应助逗逗豆芽采纳,获得10
3秒前
活泼的河马完成签到 ,获得积分10
3秒前
5秒前
展锋发布了新的文献求助10
5秒前
6秒前
小路发布了新的文献求助10
6秒前
周周发布了新的文献求助10
9秒前
传奇3应助清风揽月采纳,获得10
9秒前
HH发布了新的文献求助10
9秒前
as关闭了as文献求助
10秒前
11秒前
11秒前
脑洞疼应助zhou_zhuoli采纳,获得10
11秒前
又欠发布了新的文献求助10
11秒前
zxrzxr123完成签到,获得积分10
12秒前
Lucas应助笑口常开采纳,获得10
12秒前
飞奔的小田完成签到,获得积分10
12秒前
dingbeicn完成签到,获得积分10
12秒前
zyh发布了新的文献求助10
12秒前
13秒前
甜美的忻发布了新的文献求助10
13秒前
俊逸艳一发布了新的文献求助10
14秒前
JiangShang完成签到,获得积分10
14秒前
Tay应助braving采纳,获得10
14秒前
好运公主发布了新的文献求助10
15秒前
16秒前
16秒前
赘婿应助敏感时光采纳,获得10
17秒前
18秒前
18秒前
wanci应助qq采纳,获得10
19秒前
19秒前
李爱国应助kk采纳,获得10
19秒前
HH完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308630
求助须知:如何正确求助?哪些是违规求助? 4453704
关于积分的说明 13857839
捐赠科研通 4341445
什么是DOI,文献DOI怎么找? 2383900
邀请新用户注册赠送积分活动 1378533
关于科研通互助平台的介绍 1346495