Deep learning ensemble 2D CNN approach towards the detection of lung cancer

深度学习 人工智能 卷积神经网络 计算机科学 集成学习 联营 机器学习 深信不疑网络 模式识别(心理学) 数据集 人工神经网络 集合(抽象数据类型) 程序设计语言
作者
Asghar Ali Shah,Hafiz Abid Mahmood Malik,AbdulHafeez Muhammad,Abdullah Alourani,Zaeem Arif Butt
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:93
标识
DOI:10.1038/s41598-023-29656-z
摘要

In recent times, deep learning has emerged as a great resource to help research in medical sciences. A lot of work has been done with the help of computer science to expose and predict different diseases in human beings. This research uses the Deep Learning algorithm Convolutional Neural Network (CNN) to detect a Lung Nodule, which can be cancerous, from different CT Scan images given to the model. For this work, an Ensemble approach has been developed to address the issue of Lung Nodule Detection. Instead of using only one Deep Learning model, we combined the performance of two or more CNNs so they could perform and predict the outcome with more accuracy. The LUNA 16 Grand challenge dataset has been utilized, which is available online on their website. The dataset consists of a CT scan with annotations that better understand the data and information about each CT scan. Deep Learning works the same way our brain neurons work; therefore, deep learning is based on Artificial Neural Networks. An extensive CT scan dataset is collected to train the deep learning model. CNNs are prepared using the data set to classify cancerous and non-cancerous images. A set of training, validation, and testing datasets is developed, which is used by our Deep Ensemble 2D CNN. Deep Ensemble 2D CNN consists of three different CNNs with different layers, kernels, and pooling techniques. Our Deep Ensemble 2D CNN gave us a great result with 95% combined accuracy, which is higher than the baseline method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助漾漾采纳,获得10
刚刚
路会飞发布了新的文献求助10
刚刚
刚刚
然后完成签到,获得积分10
1秒前
1秒前
成就棒棒糖发布了新的文献求助150
1秒前
小龙发布了新的文献求助10
1秒前
NexusExplorer应助大头麦穗鱼采纳,获得10
2秒前
邵洋发布了新的文献求助10
2秒前
科研通AI5应助silence63采纳,获得50
2秒前
2秒前
月Y应助yu采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
Bing发布了新的文献求助10
4秒前
小七2022完成签到,获得积分10
5秒前
5秒前
烟花应助Mzhao采纳,获得10
5秒前
小田完成签到,获得积分10
5秒前
英俊的铭应助虫虫采纳,获得10
5秒前
五i发布了新的文献求助10
6秒前
木鱼二丁目完成签到 ,获得积分10
6秒前
6秒前
7秒前
8秒前
科研通AI5应助猪猪采纳,获得10
8秒前
shi1207863831发布了新的文献求助10
8秒前
wsx发布了新的文献求助10
8秒前
8秒前
Zx_1993应助悦悦大王采纳,获得10
9秒前
顾矜应助王多鱼采纳,获得10
9秒前
夏雪儿发布了新的文献求助10
9秒前
Orange应助张文静采纳,获得10
9秒前
阡瓴发布了新的文献求助10
10秒前
崔崔完成签到 ,获得积分10
10秒前
11秒前
所所应助russing采纳,获得10
11秒前
Selonfer完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5026099
求助须知:如何正确求助?哪些是违规求助? 4262721
关于积分的说明 13287343
捐赠科研通 4070475
什么是DOI,文献DOI怎么找? 2226285
邀请新用户注册赠送积分活动 1234912
关于科研通互助平台的介绍 1158869