Auto Diagnosis of Parkinson's Disease Via a Deep Learning Model Based on Mixed Emotional Facial Expressions

面部表情 人工智能 疾病 计算机科学 帕金森病 深度学习 模式识别(心理学) 自然语言处理 认知心理学 心理学 医学 病理
作者
Wei Huang,Wenqiang Xu,Renjie Wan,Peng Zhang,Yufei Zha,Meng Pang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 2547-2557 被引量:20
标识
DOI:10.1109/jbhi.2023.3239780
摘要

Parkinson's disease (PD) is a common degenerative disease of the nervous system in the elderly. The early diagnosis of PD is very important for potential patients to receive prompt treatment and avoid the aggravation of the disease. Recent studies have found that PD patients always suffer from emotional expression disorder, thus forming the characteristics of "masked faces". Based on this, we thus propose an auto PD diagnosis method based on mixed emotional facial expressions in the paper. Specifically, the proposed method is cast into four steps: Firstly, we synthesize virtual face images containing six basic expressions ( i.e. , anger, disgust, fear, happiness, sadness, and surprise) via generative adversarial learning, in order to approximate the premorbid expressions of PD patients; Secondly, we design an effective screening scheme to assess the quality of the above synthesized facial expression images and then shortlist the high-quality ones; Thirdly, we train a deep feature extractor accompanied with a facial expression classifier based on the mixture of the original facial expression images of the PD patients, the high-quality synthesized facial expression images of PD patients, and the normal facial expression images from other public face datasets; Finally, with the well-trained deep feature extractor, we thus adopt it to extract the latent expression features for six facial expression images of a potential PD patient to conduct PD/non-PD prediction. To show real-world impacts, we also collected a new facial expression dataset of PD patients in collaboration with a hospital. Extensive experiments are conducted to validate the effectiveness of the proposed method for PD diagnosis and facial expression recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
沛山应助晚安886采纳,获得10
1秒前
1秒前
1秒前
向连虎完成签到,获得积分10
2秒前
薄荷蓝完成签到,获得积分10
3秒前
搜集达人应助Oliver采纳,获得10
5秒前
深情安青应助梓歆采纳,获得10
5秒前
bingqing完成签到,获得积分10
5秒前
董帅发布了新的文献求助10
5秒前
5秒前
5秒前
ysy发布了新的文献求助10
5秒前
小蘑菇应助黄芬芬采纳,获得10
5秒前
6秒前
先一发布了新的文献求助10
6秒前
子车茗应助小张真的困啦采纳,获得20
7秒前
万能图书馆应助laplace_yao采纳,获得30
8秒前
Ava应助piaopiao采纳,获得10
8秒前
jam发布了新的文献求助10
8秒前
8秒前
9秒前
12345发布了新的文献求助10
9秒前
学术机器1发布了新的文献求助10
9秒前
fenglin4620完成签到,获得积分10
9秒前
王HH完成签到,获得积分10
10秒前
10秒前
赘婿应助难过的谷芹采纳,获得10
10秒前
愉快迎荷发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
emilybei发布了新的文献求助10
12秒前
向天一完成签到,获得积分10
13秒前
魔幻秋烟完成签到 ,获得积分10
13秒前
哆唻发布了新的文献求助10
13秒前
totp完成签到,获得积分10
14秒前
Oliver完成签到,获得积分10
14秒前
14秒前
guanguan发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4402637
求助须知:如何正确求助?哪些是违规求助? 3889543
关于积分的说明 12105514
捐赠科研通 3534105
什么是DOI,文献DOI怎么找? 1939209
邀请新用户注册赠送积分活动 980015
科研通“疑难数据库(出版商)”最低求助积分说明 877029