Polyrotaxanes and the pump paradigm

纳米技术 纳米医学 聚合物 高分子科学 材料科学 低聚物 分子机器 化学 纳米颗粒 高分子化学 有机化学
作者
James S W Seale,Yuanning Feng,Liang Feng,R. Dean Astumian,J. Fraser Stoddart
出处
期刊:Chemical Society Reviews [The Royal Society of Chemistry]
卷期号:51 (20): 8450-8475 被引量:22
标识
DOI:10.1039/d2cs00194b
摘要

The year 2022 marks the 30th anniversary of the first reports of polyrotaxanes in the scientific literature. During the past three decades, many combinations of molecular rings and polymer chains have been synthesised and characterised. Until recently, however, the permutations of polyrotaxanes available to researchers were limited by synthetic methods which typically relied on an innate affinity between the molecular rings and polymer chains. With the advent of oligorotaxane-forming molecular pumps in 2015, it has now become possible to pump multiple rings against their will onto oligomer and polymer chains which have little or no affinity for the rings. These molecular pumps, which can recruit rings actively from solution to form precise polyrotaxanes, represent a major breakthrough in the field. This Tutorial Review highlights key milestones in the synthesis and investigation of polyrotaxanes along with recent developments in the synthesis and theory relating to molecular pumps. Polyrotaxane properties, arising from their topologies, have allowed them to steal a march on traditional polymers in a wide range of applications in materials, electronic and biological science, from slide-ring gels to robust coatings on cell phones, from molecular wires to flexible binders for battery anodes, from efficient multivalent protein binders to bio-cleavable polyplexes for cellular DNA delivery. Molecular pumps have the potential to blaze a contemporary trail for the synthesis of precise mechanically interlocked materials, especially those dependent on non-equilibrium chemistry and those related to energy storage and nanomedicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丹霞应助ccc采纳,获得10
1秒前
加油完成签到 ,获得积分10
1秒前
1秒前
2秒前
Keke完成签到 ,获得积分10
3秒前
4秒前
5秒前
鹿晗发布了新的文献求助30
5秒前
6秒前
友好的储发布了新的文献求助10
7秒前
9秒前
NiuNiu4完成签到,获得积分10
10秒前
浅墨完成签到 ,获得积分10
10秒前
Zixu发布了新的文献求助10
11秒前
11秒前
华仔应助奋斗刺猬采纳,获得10
12秒前
Leolefroy发布了新的文献求助10
12秒前
14秒前
14秒前
16秒前
酸化土壤改良应助wjj采纳,获得30
16秒前
鹿晗完成签到,获得积分10
17秒前
锋宇发布了新的文献求助10
18秒前
lucky发布了新的文献求助10
19秒前
20秒前
自然丹云完成签到 ,获得积分10
21秒前
benben055应助老王爱学习采纳,获得10
22秒前
22秒前
友好的储发布了新的文献求助10
23秒前
24秒前
水何澹澹完成签到,获得积分0
24秒前
lucky完成签到,获得积分10
26秒前
Raydiaz发布了新的文献求助10
26秒前
27秒前
互助遵法尚德应助倘若采纳,获得10
28秒前
小南完成签到,获得积分10
32秒前
善良的迎夏完成签到,获得积分20
32秒前
ggyybb完成签到 ,获得积分10
33秒前
Anquan完成签到,获得积分10
34秒前
烟花应助黑白采纳,获得10
35秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
The Three Stars Each: The Astrolabes and Related Texts 900
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
A radiographic standard of reference for the growing knee 400
Glossary of Geology 400
Additive Manufacturing Design and Applications 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2476053
求助须知:如何正确求助?哪些是违规求助? 2140452
关于积分的说明 5455038
捐赠科研通 1863795
什么是DOI,文献DOI怎么找? 926542
版权声明 562846
科研通“疑难数据库(出版商)”最低求助积分说明 495745