Integrated analysis of multi-omics data reveals T cell exhaustion in sepsis

败血症 小桶 转录组 计算生物学 生物 免疫系统 生物标志物 疾病 生物信息学 生物途径 免疫学 基因 医学 基因表达 遗传学 内科学
作者
Qiaoke Li,Mingze Sun,Qi Zhou,Yulong Li,Jinmei Xu,Hong Fan
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:14: 1110070-1110070 被引量:14
标识
DOI:10.3389/fimmu.2023.1110070
摘要

Background Sepsis is a heterogeneous disease, therefore the single-gene-based biomarker is not sufficient to fully understand the disease. Higher-level biomarkers need to be explored to identify important pathways related to sepsis and evaluate their clinical significance. Methods Gene Set Enrichment Analysis (GSEA) was used to analyze the sepsis transcriptome to obtain the pathway-level expression. Limma was used to identify differentially expressed pathways. Tumor IMmune Estimation Resource (TIMER) was applied to estimate immune cell abundance. The Spearman correlation coefficient was used to find the relationships between pathways and immune cell abundance. Methylation and single-cell transcriptome data were also employed to identify important pathway genes. Log-rank test was performed to test the prognostic significance of pathways for patient survival probability. DSigDB was used to mine candidate drugs based on pathways. PyMol was used for 3-D structure visualization. LigPlot was used to plot the 2-D pose view for receptor-ligand interaction. Results Eighty-four KEGG pathways were differentially expressed in sepsis patients compared to healthy controls. Of those, 10 pathways were associated with 28-day survival. Some pathways were significantly correlated with immune cell abundance and five pathways could be used to distinguish between systemic inflammatory response syndrome (SIRS), bacterial sepsis, and viral sepsis with Area Under the Curve (AUC) above 0.80. Seven related drugs were screened using survival-related pathways. Conclusion Sepsis-related pathways can be utilized for disease subtyping, diagnosis, prognosis, and drug screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
含蓄元冬发布了新的文献求助10
1秒前
糯米糍完成签到,获得积分10
1秒前
mildjorker发布了新的文献求助10
2秒前
2秒前
肥波完成签到,获得积分10
2秒前
烟花应助MW采纳,获得10
2秒前
NexusExplorer应助bolosenjidy采纳,获得10
2秒前
科研通AI6应助钱罐罐采纳,获得10
3秒前
3秒前
翟翟发布了新的文献求助10
3秒前
good猫妮发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
兔子发布了新的文献求助10
4秒前
Owen应助滕侑林采纳,获得10
4秒前
5秒前
所所应助小马不会做科研采纳,获得10
5秒前
5秒前
会袜子发布了新的文献求助30
6秒前
余松林完成签到,获得积分10
6秒前
核桃应助冰激凌采纳,获得10
7秒前
mm完成签到,获得积分10
7秒前
7秒前
小乔同学发布了新的文献求助10
7秒前
完美世界应助xxxx采纳,获得10
8秒前
甄樱发布了新的文献求助10
9秒前
露露发布了新的文献求助10
9秒前
十七发布了新的文献求助10
10秒前
Luna完成签到 ,获得积分10
10秒前
10秒前
文静的觅海完成签到,获得积分10
10秒前
乐天生完成签到,获得积分10
10秒前
健壮冰淇淋完成签到,获得积分20
10秒前
11秒前
xzy998应助ZhilongWang采纳,获得30
11秒前
生信小菜鸟完成签到 ,获得积分10
11秒前
隐形曼青应助科研开门采纳,获得10
11秒前
12秒前
time完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481218
求助须知:如何正确求助?哪些是违规求助? 4582199
关于积分的说明 14384156
捐赠科研通 4510881
什么是DOI,文献DOI怎么找? 2472055
邀请新用户注册赠送积分活动 1458443
关于科研通互助平台的介绍 1432034