Deep Multi-Modal Discriminative and Interpretability Network for Alzheimer’s Disease Diagnosis

判别式 可解释性 人工智能 计算机科学 典型相关 模式识别(心理学) 深度学习 特征提取 机器学习 特征(语言学) 卷积神经网络 代表(政治) 特征学习 政治 哲学 语言学 法学 政治学
作者
Qi Zhu,Bingliang Xu,Jiashuang Huang,Heyang Wang,Ruting Xu,Wei Shao,Daoqiang Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (5): 1472-1483 被引量:41
标识
DOI:10.1109/tmi.2022.3230750
摘要

Multi-modal fusion has become an important data analysis technology in Alzheimer's disease (AD) diagnosis, which is committed to effectively extract and utilize complementary information among different modalities. However, most of the existing fusion methods focus on pursuing common feature representation by transformation, and ignore discriminative structural information among samples. In addition, most fusion methods use high-order feature extraction, such as deep neural network, by which it is difficult to identify biomarkers. In this paper, we propose a novel method named deep multi-modal discriminative and interpretability network (DMDIN), which aligns samples in a discriminative common space and provides a new approach to identify significant brain regions (ROIs) in AD diagnosis. Specifically, we reconstruct each modality with a hierarchical representation through multilayer perceptron (MLP), and take advantage of the shared self-expression coefficients constrained by diagonal blocks to embed the structural information of inter-class and the intra-class. Further, the generalized canonical correlation analysis (GCCA) is adopted as a correlation constraint to generate a discriminative common space, in which samples of the same category gather while samples of different categories stay away. Finally, in order to enhance the interpretability of the deep learning model, we utilize knowledge distillation to reproduce coordinated representations and capture influence of brain regions in AD classification. Experiments show that the proposed method performs better than several state-of-the-art methods in AD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助vivi采纳,获得10
2秒前
yuki完成签到,获得积分10
2秒前
2秒前
fang发布了新的文献求助30
2秒前
仙林AK47完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
琛琛发布了新的文献求助10
3秒前
菠萝冰发布了新的文献求助10
3秒前
3秒前
信仰发布了新的文献求助10
4秒前
5秒前
哈基米发布了新的文献求助50
6秒前
6秒前
小杨爱学习应助ff采纳,获得10
8秒前
秋雨发布了新的文献求助10
9秒前
9秒前
9秒前
琛琛完成签到,获得积分20
10秒前
11秒前
三方完成签到,获得积分10
12秒前
long发布了新的文献求助10
12秒前
沉静从阳完成签到,获得积分10
14秒前
18秒前
18秒前
无花果应助AFASF采纳,获得10
18秒前
桐桐应助火花采纳,获得10
20秒前
HanluMa发布了新的文献求助30
21秒前
充电宝应助北极光采纳,获得10
21秒前
21秒前
abc发布了新的文献求助10
22秒前
和谐续完成签到 ,获得积分10
23秒前
23秒前
研友_Z7QedL发布了新的文献求助10
24秒前
共享精神应助秋雨采纳,获得10
24秒前
26秒前
bing应助无限草丛采纳,获得10
27秒前
28秒前
李健应助优雅的盼夏采纳,获得10
28秒前
小杨爱学习应助ff采纳,获得10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Treatise on Geochemistry (Third edition) 1600
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4710398
求助须知:如何正确求助?哪些是违规求助? 4075250
关于积分的说明 12601332
捐赠科研通 3777320
什么是DOI,文献DOI怎么找? 2086620
邀请新用户注册赠送积分活动 1113228
科研通“疑难数据库(出版商)”最低求助积分说明 990862