Deep-learning method for fully automatic segmentation of the abdominal aortic aneurysm from computed tomography imaging

腹主动脉瘤 分割 医学 放射科 动脉瘤 管腔(解剖学) 人工智能 主动脉 无症状的 腹主动脉 计算机断层摄影术 计算机科学 外科
作者
Atefeh Abdolmanafi,Arianna Forneris,Randy D. Moore,Elena S. Di Martino
出处
期刊:Frontiers in Cardiovascular Medicine [Frontiers Media]
卷期号:9 被引量:12
标识
DOI:10.3389/fcvm.2022.1040053
摘要

Abdominal aortic aneurysm (AAA) is one of the leading causes of death worldwide. AAAs often remain asymptomatic until they are either close to rupturing or they cause pressure to the spine and/or other organs. Fast progression has been linked to future clinical outcomes. Therefore, a reliable and efficient system to quantify geometric properties and growth will enable better clinical prognoses for aneurysms. Different imaging systems can be used to locate and characterize an aneurysm; computed tomography (CT) is the modality of choice in many clinical centers to monitor later stages of the disease and plan surgical treatment. The lack of accurate and automated techniques to segment the outer wall and lumen of the aneurysm results in either simplified measurements that focus on few salient features or time-consuming segmentation affected by high inter- and intra-operator variability. To overcome these limitations, we propose a model for segmenting AAA tissues automatically by using a trained deep learning-based approach. The model is composed of three different steps starting with the extraction of the aorta and iliac arteries followed by the detection of the lumen and other AAA tissues. The results of the automated segmentation demonstrate very good agreement when compared to manual segmentation performed by an expert.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助虚心的羿采纳,获得10
2秒前
吃糖发布了新的文献求助10
4秒前
深情安青应助科研混子采纳,获得10
5秒前
6秒前
8秒前
朴素的白柏完成签到,获得积分10
9秒前
9秒前
科研通AI5应助没有稗子采纳,获得10
10秒前
10秒前
67完成签到,获得积分10
10秒前
Kevin完成签到,获得积分10
11秒前
Ming完成签到,获得积分10
11秒前
11秒前
gez发布了新的文献求助10
12秒前
12秒前
13秒前
英俊小美发布了新的文献求助10
13秒前
妖精发布了新的文献求助10
14秒前
酷波er应助相望晨星采纳,获得10
14秒前
yueh完成签到,获得积分10
15秒前
Bear发布了新的文献求助10
15秒前
tramp应助jessicazhong采纳,获得20
17秒前
虚心的羿发布了新的文献求助10
17秒前
18秒前
bobo发布了新的文献求助10
19秒前
20秒前
21秒前
21秒前
CodeCraft应助阿芙乐尔采纳,获得10
22秒前
科研通AI5应助阿芙乐尔采纳,获得10
22秒前
24秒前
25秒前
25秒前
动漫大师发布了新的文献求助10
26秒前
28秒前
Rainbow完成签到 ,获得积分10
28秒前
十三月完成签到,获得积分10
29秒前
顾矜应助任性斑马采纳,获得10
29秒前
30秒前
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787451
求助须知:如何正确求助?哪些是违规求助? 3333090
关于积分的说明 10259068
捐赠科研通 3048483
什么是DOI,文献DOI怎么找? 1673134
邀请新用户注册赠送积分活动 801680
科研通“疑难数据库(出版商)”最低求助积分说明 760308