Prediction model for the evolution of hydrogen concentration under leakage in hydrogen refueling station using deep neural networks

泄漏(经济) 计算机科学 人工神经网络 卷积神经网络 环境科学 可靠性工程 人工智能 工程类 化学 宏观经济学 经济 有机化学
作者
Xu He,Depeng Kong,Xirui Yu,Ping Ping,Gongquan Wang,Rongqi Peng,Yue Zhang,Xinyi Dai
出处
期刊:International Journal of Hydrogen Energy [Elsevier BV]
卷期号:51: 702-712 被引量:24
标识
DOI:10.1016/j.ijhydene.2022.12.102
摘要

The widespread risks of leakages in the hydrogen industry chain require a method that can quickly predict the consequences of accidents, especially in the hydrogen refueling station (HRS). This paper presents a surrogate model based on physics-informed neural network (PINN) that can predict the distribution of hydrogen concentration after a leakage. The proposed Physics-informed Convolutional Long Short-Term Memory Network (PI-ConvLSTM) model improves the concentration prediction results at the gas cloud boundary by adding a physical constraint term to the loss function of the ConvLSTM model. The concentration distributions after hydrogen leakage at HRS simulated by FLACS are used as the training samples, and the concentration data are converted into grayscale maps for training. The hydrogen concentration prediction method with the proposed surrogate model as the core achieves fast prediction of the gas cloud concentration distribution with acceptable accuracy. It is observed that the method can greatly reduce the prediction time of the consequences of hydrogen leak accidents with the surrogate model already trained. It can provide real-time risk warning and consequence prediction for hydrogen refueling station leakage accidents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纯真的伟诚应助SUV采纳,获得10
1秒前
股价发布了新的文献求助10
2秒前
桐桐应助不吃香菜采纳,获得10
2秒前
Kaysen92完成签到,获得积分10
2秒前
孙燕应助桃李春风一杯酒采纳,获得10
5秒前
5秒前
6秒前
须眉交白完成签到,获得积分10
6秒前
高贵的子默应助Xiaoxiao采纳,获得20
8秒前
hopen完成签到,获得积分10
10秒前
木子李应助ttm采纳,获得10
10秒前
上官若男应助ttm采纳,获得10
10秒前
高贵的子默应助陈朝旧迹采纳,获得10
10秒前
Adel完成签到 ,获得积分10
11秒前
12秒前
科研通AI2S应助股价采纳,获得10
12秒前
overlood完成签到 ,获得积分10
14秒前
阿瓜发布了新的文献求助10
17秒前
21秒前
22秒前
fenfen好学发布了新的文献求助10
24秒前
25秒前
28秒前
冥冥之极为昭昭应助Pittes采纳,获得10
28秒前
任性的一刀完成签到,获得积分10
28秒前
fenfen好学完成签到,获得积分10
30秒前
酷波er应助郭晓峰采纳,获得10
30秒前
高是个科研狗完成签到 ,获得积分10
31秒前
yin印完成签到 ,获得积分10
32秒前
32秒前
shiqiang mu应助科研通管家采纳,获得10
32秒前
嘿嘿应助科研通管家采纳,获得10
32秒前
嘿嘿应助科研通管家采纳,获得30
32秒前
32秒前
32秒前
32秒前
shiqiang mu应助科研通管家采纳,获得10
32秒前
32秒前
32秒前
32秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4088142
求助须知:如何正确求助?哪些是违规求助? 3626919
关于积分的说明 11500556
捐赠科研通 3339760
什么是DOI,文献DOI怎么找? 1836058
邀请新用户注册赠送积分活动 904217
科研通“疑难数据库(出版商)”最低求助积分说明 822124