Prediction model for the evolution of hydrogen concentration under leakage in hydrogen refueling station using deep neural networks

泄漏(经济) 计算机科学 人工神经网络 卷积神经网络 环境科学 可靠性工程 人工智能 工程类 化学 有机化学 经济 宏观经济学
作者
Xu He,Depeng Kong,Xirui Yu,Ping Ping,Gongquan Wang,Rongqi Peng,Yue Zhang,Xinyi Dai
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:51: 702-712 被引量:24
标识
DOI:10.1016/j.ijhydene.2022.12.102
摘要

The widespread risks of leakages in the hydrogen industry chain require a method that can quickly predict the consequences of accidents, especially in the hydrogen refueling station (HRS). This paper presents a surrogate model based on physics-informed neural network (PINN) that can predict the distribution of hydrogen concentration after a leakage. The proposed Physics-informed Convolutional Long Short-Term Memory Network (PI-ConvLSTM) model improves the concentration prediction results at the gas cloud boundary by adding a physical constraint term to the loss function of the ConvLSTM model. The concentration distributions after hydrogen leakage at HRS simulated by FLACS are used as the training samples, and the concentration data are converted into grayscale maps for training. The hydrogen concentration prediction method with the proposed surrogate model as the core achieves fast prediction of the gas cloud concentration distribution with acceptable accuracy. It is observed that the method can greatly reduce the prediction time of the consequences of hydrogen leak accidents with the surrogate model already trained. It can provide real-time risk warning and consequence prediction for hydrogen refueling station leakage accidents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助dududu采纳,获得10
1秒前
Orange应助大半个菜鸟采纳,获得10
1秒前
乐乐应助不安的凡桃采纳,获得10
2秒前
杏林靴子完成签到,获得积分10
2秒前
浮浮世世发布了新的文献求助10
3秒前
5秒前
炙热静白完成签到,获得积分20
6秒前
6秒前
无花果应助现代的雪糕采纳,获得30
7秒前
7秒前
传奇3应助Blanca采纳,获得10
7秒前
云蓝完成签到 ,获得积分10
8秒前
9秒前
9秒前
luxiuzhen完成签到,获得积分10
9秒前
9秒前
10秒前
QQYYHH完成签到,获得积分10
11秒前
Zzk完成签到,获得积分10
12秒前
冷傲老头发布了新的文献求助10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
科研通AI2S应助1816013153采纳,获得10
13秒前
秀丽的咖啡完成签到,获得积分10
14秒前
凡华发布了新的文献求助10
15秒前
16秒前
zzz发布了新的文献求助10
16秒前
16秒前
九九发布了新的文献求助10
18秒前
如意绾绾发布了新的文献求助10
18秒前
清秀尔安完成签到,获得积分10
19秒前
19秒前
19秒前
www发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
20秒前
对对完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481597
求助须知:如何正确求助?哪些是违规求助? 4582625
关于积分的说明 14385853
捐赠科研通 4511310
什么是DOI,文献DOI怎么找? 2472314
邀请新用户注册赠送积分活动 1458592
关于科研通互助平台的介绍 1432094