已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MilGNet: A Multi-instance Learning-based Heterogeneous Graph Network for Drug repositioning

可解释性 计算机科学 药物重新定位 图形 机器学习 人工智能 特征学习 异构网络 路径(计算) 药品 理论计算机科学 医学 无线网络 精神科 电信 程序设计语言 无线
作者
Yaowen Gu,Si Zheng,Bowen Zhang,Hongyu Kang,Jiao Li
标识
DOI:10.1109/bibm55620.2022.9995152
摘要

The traditional wet-experiment-guided drug discovery is a labor-consuming and time-consuming process. Quite a few computational drug repositioning approaches have been proposed to predict potential drug-disease associations for the discovery of new indications for drugs and new therapies for diseases. Among them, heterogeneous graph neural network-based approaches can learn drug/disease topological representations on heterogeneous graphs and then give precise inferences for unconfirmed drug-disease associations. However, the existing approaches ignored the meta-paths in the drug-disease networks which could enhance the model performance and interpretability. In this study, we first proposed a multi-instance learning-based heterogeneous graph network approach for drug-disease association prediction, which is called MilGNet. Fusing with heterogeneous graph convolutional layer, the MilGNet learns meta-path-level representations for given drug-disease pairs by a novel pseudo meta-path instance generator and a bidirectional translating embedding projector. Then, an attention-based multi-scale interpretable joint predictor is assembled for precise and rational drug-disease association prediction. Comprehensive experiments have demonstrated the effectiveness of MilGNet compared to 6 advanced approaches. Meanwhile, the case study also shows the model interpretability of MilGNet by identifying high confident meta-paths. Our adopted benchmark dataset and source code are available at https://github.com/gu-yaowen/MilGNet..
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浪哒哒发布了新的文献求助10
3秒前
8秒前
浪哒哒完成签到,获得积分10
8秒前
月亮在o完成签到 ,获得积分10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
科研小牛应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
lb001发布了新的文献求助30
12秒前
0000完成签到 ,获得积分10
14秒前
Lucas应助MS采纳,获得30
14秒前
xsx完成签到,获得积分10
16秒前
羊木完成签到,获得积分10
18秒前
充电宝应助Hao采纳,获得10
19秒前
Icy发布了新的文献求助20
20秒前
桐桐应助bubu采纳,获得10
21秒前
打打应助DJY采纳,获得50
23秒前
23秒前
24秒前
lee发布了新的文献求助10
27秒前
kilig完成签到,获得积分10
27秒前
郭郭完成签到,获得积分10
29秒前
30秒前
秋作完成签到,获得积分10
34秒前
柚哦完成签到,获得积分10
35秒前
酥饼完成签到,获得积分10
37秒前
zhaojj完成签到,获得积分10
39秒前
39秒前
40秒前
41秒前
Juggu完成签到 ,获得积分10
42秒前
jasonjiang完成签到 ,获得积分0
43秒前
44秒前
何宁完成签到,获得积分10
45秒前
48秒前
49秒前
50秒前
lee完成签到,获得积分10
50秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795430
求助须知:如何正确求助?哪些是违规求助? 3340416
关于积分的说明 10300140
捐赠科研通 3056953
什么是DOI,文献DOI怎么找? 1677332
邀请新用户注册赠送积分活动 805375
科研通“疑难数据库(出版商)”最低求助积分说明 762491