A hybrid particle swarm optimization and simulated annealing algorithm for the job shop scheduling problem with transport resources

作业车间调度 计算机科学 数学优化 模拟退火 粒子群优化 调度(生产过程) 整数规划 流水车间调度 动态优先级调度 算法 地铁列车时刻表 数学 操作系统
作者
Dalila B.M.M. Fontes,Seyed Mahdi Homayouni,José Fernando Gonçalves
出处
期刊:European Journal of Operational Research [Elsevier BV]
卷期号:306 (3): 1140-1157 被引量:153
标识
DOI:10.1016/j.ejor.2022.09.006
摘要

This work addresses a variant of the job shop scheduling problem in which jobs need to be transported to the machines processing their operations by a limited number of vehicles. Given that vehicles must deliver the jobs to the machines for processing and that machines need to finish processing the jobs before they can be transported, machine scheduling and vehicle scheduling are intertwined. A coordinated approach that solves these interrelated problems simultaneously improves the overall performance of the manufacturing system. In the current competitive business environment, and integrated approach is imperative as it boosts cost savings and on-time deliveries. Hence, the job shop scheduling problem with transport resources (JSPT) requires scheduling production operations and transport tasks simultaneously. The JSPT is studied considering the minimization of two alternative performance metrics, namely: makespan and exit time. Optimal solutions are found by a mixed integer linear programming (MILP) model. However, since integrated production and transportation scheduling is very complex, the MILP model can only handle small-sized problem instances. To find good quality solutions in reasonable computation times, we propose a hybrid particle swarm optimization and simulated annealing algorithm (PSOSA). Furthermore, we derive a fast lower bounding procedure that can be used to evaluate the performance of the heuristic solutions for larger instances. Extensive computational experiments are conducted on 73 benchmark instances, for each of the two performance metrics, to assess the efficacy and efficiency of the proposed PSOSA algorithm. These experiments show that the PSOSA outperforms state-of-the-art solution approaches and is very robust.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
空12完成签到,获得积分10
2秒前
YOUng完成签到,获得积分20
3秒前
3秒前
狮子的猫发布了新的文献求助10
4秒前
自然天川完成签到,获得积分10
6秒前
ss发布了新的文献求助10
9秒前
9秒前
认真的白易完成签到,获得积分10
10秒前
吕小软完成签到,获得积分10
11秒前
科研小白鼠完成签到,获得积分20
13秒前
mera发布了新的文献求助10
13秒前
科研通AI5应助颖南婉采纳,获得10
13秒前
wanmiao12完成签到,获得积分10
15秒前
15秒前
飞鸿完成签到,获得积分10
16秒前
111发布了新的文献求助10
16秒前
16秒前
小胖子发布了新的文献求助30
17秒前
17秒前
yyzhou应助辛勤月饼采纳,获得20
17秒前
善学以致用应助lzc采纳,获得10
17秒前
楠楠爱淘淘完成签到,获得积分20
18秒前
ustbswt发布了新的文献求助10
20秒前
Hou完成签到,获得积分10
23秒前
May完成签到,获得积分10
23秒前
23秒前
24秒前
鹿乃发布了新的文献求助10
24秒前
26秒前
May发布了新的文献求助10
27秒前
黄景阳完成签到,获得积分10
27秒前
小杭76应助无语的代真采纳,获得10
29秒前
ustbswt完成签到,获得积分10
29秒前
涤新发布了新的文献求助10
32秒前
32秒前
33秒前
青阳完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4970535
求助须知:如何正确求助?哪些是违规求助? 4227084
关于积分的说明 13165699
捐赠科研通 4015009
什么是DOI,文献DOI怎么找? 2197025
邀请新用户注册赠送积分活动 1209987
关于科研通互助平台的介绍 1124293