已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic Vertical Root Fracture Detection on Intraoral Periapical Radiographs With Artificial Intelligence‐Based Image Enhancement

卡帕 科恩卡帕 射线照相术 医学 金标准(测试) 人工智能 臼齿 前磨牙 牙科 诊断准确性 口腔正畸科 核医学 数学 计算机科学 放射科 统计 几何学
作者
Şifa Özsarı,Kıvanç Kamburoğlu,Aviad Tamse,Suna Elçin Yener,Igor Tsesis,Funda Yılmaz,Eyal Rosen
出处
期刊:Dental Traumatology [Wiley]
标识
DOI:10.1111/edt.13027
摘要

ABSTRACT Background/Aim To explore transfer learning ( TL ) techniques for enhancing vertical root fracture ( VRF ) diagnosis accuracy and to assess the impact of artificial intelligence ( AI ) on image enhancement for VRF detection on both extracted teeth images and intraoral images taken from patients. Materials and Methods A dataset of 378 intraoral periapical radiographs comprising 195 teeth with fractures and 183 teeth without fractures serving as controls was included. DenseNet , ConvNext , Inception121, and MobileNetV2 were employed with model fusion. Prior to evaluation, Particle Swarm Optimization ( PSO ) and Deep Learning ( DL ) image enhancement were applied. Performance assessment included accuracy rate, precision, recall, F1 ‐score, AUC , and kappa values. Intra‐ and inter‐observer agreement, according to the Gold Standard ( GS ), were assessed using ICC and t ‐tests. Statistical significance was set at p < 0.05. Results The DenseNet + Inception fusion model achieved the highest accuracy rate of 0.80, with commendable recall, F1 ‐score, and AUC values, supported by precision (0.81) and kappa (0.60) values. Molar tooth examination yielded an accuracy rate, precision, recall, and F1 ‐score of 0.80, with an AUC of 0.84 and kappa of 0.60. For premolar teeth, the fusion network showed an accuracy rate of 0.78, an AUC of 0.78, and notable metrics, including F1 ‐score (0.80), recall (0.85), precision (0.71), and kappa (0.55). ICC results demonstrated acceptable agreement (≥ 0.57 for molars, ≥ 0.52 for premolars). Conclusion TL methods have demonstrated significant potential in enhancing diagnostic accuracy for VRFs in radiographic imaging. TL is emerging as a valuable tool in the development of robust, automated diagnostic systems for VRF identification, ultimately supporting clinicians in delivering more accurate diagnoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Aaron完成签到 ,获得积分0
4秒前
木鸽子完成签到,获得积分10
4秒前
龚幻梦发布了新的文献求助10
7秒前
饺子生面包完成签到,获得积分10
7秒前
9秒前
10秒前
kskdss发布了新的文献求助10
13秒前
WilliamJarvis完成签到 ,获得积分10
14秒前
鹿鹿鸭发布了新的文献求助10
17秒前
18秒前
WQY完成签到,获得积分10
19秒前
汉堡包应助龚幻梦采纳,获得10
21秒前
西柚完成签到 ,获得积分10
24秒前
BEYOND啊完成签到 ,获得积分10
28秒前
群山完成签到 ,获得积分10
29秒前
30秒前
32秒前
志豪发布了新的文献求助10
33秒前
龚幻梦完成签到,获得积分10
35秒前
zzzllove完成签到 ,获得积分10
37秒前
39秒前
华仔应助zewangguo采纳,获得10
40秒前
现代书雪完成签到,获得积分20
40秒前
爱民发布了新的文献求助20
41秒前
42秒前
44秒前
科研小白董完成签到 ,获得积分10
45秒前
xiyu完成签到,获得积分10
46秒前
xiyu发布了新的文献求助10
49秒前
55秒前
57秒前
57秒前
千倾完成签到 ,获得积分10
58秒前
zewangguo发布了新的文献求助10
59秒前
1分钟前
李健应助wonder123采纳,获得10
1分钟前
zcc发布了新的文献求助10
1分钟前
简单发布了新的文献求助10
1分钟前
干净绿真发布了新的文献求助10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798422
求助须知:如何正确求助?哪些是违规求助? 3343818
关于积分的说明 10317793
捐赠科研通 3060542
什么是DOI,文献DOI怎么找? 1679588
邀请新用户注册赠送积分活动 806729
科研通“疑难数据库(出版商)”最低求助积分说明 763296