Spatial transcriptomic clocks reveal cell proximity effects in brain ageing

老化 转录组 电池类型 神经科学 生物 重编程 细胞 遗传学 基因表达 基因
作者
Eric Sun,Olivia Y. Zhou,Max Hauptschein,Nimrod Rappoport,Lucy Xu,Paloma Navarro Negredo,Ling Liu,Thomas A. Rando,James Zou,Anne Brunet
出处
期刊:Nature [Nature Portfolio]
被引量:4
标识
DOI:10.1038/s41586-024-08334-8
摘要

Old age is associated with a decline in cognitive function and an increase in neurodegenerative disease risk1. Brain ageing is complex and is accompanied by many cellular changes2. Furthermore, the influence that aged cells have on neighbouring cells and how this contributes to tissue decline is unknown. More generally, the tools to systematically address this question in ageing tissues have not yet been developed. Here we generate a spatially resolved single-cell transcriptomics brain atlas of 4.2 million cells from 20 distinct ages across the adult lifespan and across two rejuvenating interventions—exercise and partial reprogramming. We build spatial ageing clocks, machine learning models trained on this spatial transcriptomics atlas, to identify spatial and cell-type-specific transcriptomic fingerprints of ageing, rejuvenation and disease, including for rare cell types. Using spatial ageing clocks and deep learning, we find that T cells, which increasingly infiltrate the brain with age, have a marked pro-ageing proximity effect on neighbouring cells. Surprisingly, neural stem cells have a strong pro-rejuvenating proximity effect on neighbouring cells. We also identify potential mediators of the pro-ageing effect of T cells and the pro-rejuvenating effect of neural stem cells on their neighbours. These results suggest that rare cell types can have a potent influence on their neighbours and could be targeted to counter tissue ageing. Spatial ageing clocks represent a useful tool for studying cell–cell interactions in spatial contexts and should allow scalable assessment of the efficacy of interventions for ageing and disease. A spatially resolved single-cell transcriptomics map of the mouse brain at different ages reveals signatures of ageing, rejuvenation and disease, including ageing effects associated with T cells and rejuvenation associated with neural stem cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
美好的千凝完成签到,获得积分10
2秒前
enjoy发布了新的文献求助10
2秒前
小二郎应助yue采纳,获得10
6秒前
tygfff完成签到,获得积分10
6秒前
明明完成签到 ,获得积分10
6秒前
欸嘿完成签到,获得积分10
7秒前
一枚青椒发布了新的文献求助10
8秒前
宝蓝调调完成签到 ,获得积分10
10秒前
IrisFang1030完成签到,获得积分10
11秒前
11秒前
pcx完成签到,获得积分10
11秒前
一枚青椒完成签到,获得积分10
12秒前
小花发布了新的文献求助10
13秒前
隐形曼青应助卡列林采纳,获得10
14秒前
16秒前
Jyy77完成签到 ,获得积分10
16秒前
17秒前
思源应助Peng采纳,获得10
17秒前
19秒前
mylaodao完成签到,获得积分0
20秒前
SciGPT应助enjoy采纳,获得10
20秒前
20秒前
应应发布了新的文献求助10
21秒前
想不想发布了新的文献求助10
22秒前
24秒前
西早07完成签到,获得积分10
25秒前
半柚发布了新的文献求助10
25秒前
完美世界应助Peng采纳,获得10
27秒前
Lucas应助NMZN采纳,获得10
28秒前
Zhou发布了新的文献求助10
29秒前
30秒前
31秒前
威武的翠安完成签到 ,获得积分10
32秒前
dpcrel发布了新的文献求助10
32秒前
chen发布了新的文献求助10
34秒前
想不想完成签到 ,获得积分10
34秒前
35秒前
37秒前
37秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783189
求助须知:如何正确求助?哪些是违规求助? 3328521
关于积分的说明 10236932
捐赠科研通 3043634
什么是DOI,文献DOI怎么找? 1670622
邀请新用户注册赠送积分活动 799792
科研通“疑难数据库(出版商)”最低求助积分说明 759126