Application of Support Vector Machine Algorithm in Predicting the Career Development Path of College Students

支持向量机 路径(计算) 职业发展 职业道路 计算机科学 算法 人工智能 机器学习 心理学 工程类 工程管理 教育学 计算机网络
作者
Yan Li,Zhao Liang
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s012915642540230x
摘要

This paper focuses on analyzing the use of the Support Vector Machine (SVM) classifier in forecasting the career progression of college students. In this case, the research seeks to evaluate the performance of SVM in the prediction of students’ job outcomes regarding factors like GPA, extra curriculum activities, and internship. This dataset was taken with these attributes and after completing the exploration a feature selection by the Recursive Feature Elimination (RFE) was used. The model compiled the data with 80% of data for training, with the 20% of data that were used for testing, the model’s overall accuracy in prediction stood at 87%. Evaluation metrics such as precision, recall, and F1-score were used to validate the model’s performance across five distinct career paths: Academia, industry, entrepreneurship, government, and freelancing. In general, high accuracy in identifying academic and government careers was reported while freelancing and entrepreneurship were less successfully predicted possibly because of their unbound lifestyle. As stated, the study shows that SVM can indeed be used for career counseling in the educational sectors since students can be given an objective model to follow. Future enhancement includes the addition of personality variables and career choice to improve prediction for the less defined occupation types such as freelance work and self-employment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Moore完成签到,获得积分10
1秒前
YGG发布了新的文献求助10
1秒前
skr完成签到,获得积分10
1秒前
zxs发布了新的文献求助10
1秒前
酷炫的凤妖完成签到 ,获得积分10
1秒前
anlist发布了新的文献求助10
1秒前
宝儿柯察金完成签到,获得积分10
2秒前
tan126391发布了新的文献求助10
3秒前
王少通发布了新的文献求助10
3秒前
搞怪夏蓉发布了新的文献求助10
4秒前
4秒前
attilio完成签到,获得积分10
5秒前
tang完成签到,获得积分10
5秒前
5秒前
kuo完成签到,获得积分10
6秒前
善学以致用应助LewisAcid采纳,获得10
6秒前
着急的寒梦完成签到,获得积分10
6秒前
6秒前
热心的睿渊关注了科研通微信公众号
7秒前
FashionBoy应助小林要发sci采纳,获得10
7秒前
小粽子完成签到,获得积分10
8秒前
科研r发布了新的文献求助10
8秒前
8秒前
科研通AI2S应助叫我秦缪公采纳,获得10
8秒前
8秒前
鳗鱼白竹完成签到,获得积分10
9秒前
T拐拐发布了新的文献求助10
9秒前
真龙狂婿完成签到,获得积分10
9秒前
Nia完成签到,获得积分10
9秒前
chliyong完成签到,获得积分20
9秒前
10秒前
美满的砖头完成签到 ,获得积分10
10秒前
zyp发布了新的文献求助10
10秒前
dsfsd发布了新的文献求助10
10秒前
顾矜应助紫z紫采纳,获得30
11秒前
11秒前
Zx_1993应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4928387
求助须知:如何正确求助?哪些是违规求助? 4197510
关于积分的说明 13038703
捐赠科研通 3970507
什么是DOI,文献DOI怎么找? 2175750
邀请新用户注册赠送积分活动 1192883
关于科研通互助平台的介绍 1103634