已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The Real-Time Prediction of Cracks and Wrinkles in Sheet Metal Forming According to Changes in Shape and Position of Drawbeads Based on a Digital Twin

成形性 金属薄板 职位(财务) 随机森林 过程(计算) 人工神经网络 汽车工业 工程类 人工智能 计算机科学 结构工程 机器学习 材料科学 航空航天工程 复合材料 经济 操作系统 财务
作者
Sarang Yi,Daeil Hyun,Seokmoo Hong
出处
期刊:Applied sciences [MDPI AG]
卷期号:15 (2): 700-700 被引量:3
标识
DOI:10.3390/app15020700
摘要

In the automotive industry, extensive research has been conducted to eliminate factors negatively impacting product quality, such as wrinkles, cracks, and thickness distribution in components. The application of drawbeads often relies on the experience of field workers, leading to considerable trial and error before stabilizing the production process. Therefore, to efficiently transform these inefficiencies related to time and cost, there is a need for real-time predictive technology for forming quality based on the position of drawbeads and the bead force. This study proposes a method for predicting formability in real-time, based on a digital twin framework that considers the position of drawbeads and holder force. A digital twin was developed to predict the sheet metal forming process using Support Vector Machine, Random Forest, Gradient Boosting Machine, and Artificial Neural Networks. The machine learning models were trained using finite element analysis data corresponding to the position and bead force of drawbeads, enabling the real-time prediction of wrinkles and crack occurrences. The accuracy of the machine learning models was demonstrated, achieving 100% accuracy in determining crack occurrence, with a mean squared error (MSE) of 0.141 for wrinkle prediction and 0.038 for crack prediction, thereby ensuring the accuracy of the forming prediction model based on drawbead applications. Based on these predictive models, a user-friendly GUI has been developed, which is expected to reduce design time and costs while facilitating real-time predictions of forming quality, such as wrinkles and cracks, on-site.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
慕青应助诚心洙采纳,获得10
1秒前
Leon_Kim发布了新的文献求助10
2秒前
支半雪发布了新的文献求助10
3秒前
4秒前
chrysophoron发布了新的文献求助10
4秒前
4秒前
平常夏青完成签到 ,获得积分10
5秒前
科目三应助PrayOne采纳,获得10
5秒前
冷咖啡离开了杯垫完成签到,获得积分10
5秒前
jttjtjtj发布了新的文献求助10
6秒前
Much发布了新的文献求助200
7秒前
Mic应助悦耳的涫采纳,获得10
8秒前
科研通AI6应助mbf采纳,获得10
9秒前
打打应助aaaaa采纳,获得10
10秒前
10秒前
李多多完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
17秒前
jttjtjtj完成签到,获得积分10
17秒前
许丛郁发布了新的文献求助10
18秒前
Leon_Kim完成签到,获得积分10
18秒前
支半雪完成签到,获得积分10
19秒前
小狗眼镜亮晶晶完成签到,获得积分10
20秒前
21秒前
bkagyin应助小陈采纳,获得10
21秒前
PrayOne发布了新的文献求助10
21秒前
21秒前
久久丫完成签到 ,获得积分10
21秒前
科研通AI6应助饱满的怜阳采纳,获得10
22秒前
22秒前
刘慧鑫发布了新的文献求助10
24秒前
小米发布了新的文献求助10
25秒前
ding应助问天采纳,获得10
26秒前
科研通AI6应助mbf采纳,获得10
26秒前
28秒前
悦耳念梦发布了新的文献求助10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548776
求助须知:如何正确求助?哪些是违规求助? 4633988
关于积分的说明 14633429
捐赠科研通 4575623
什么是DOI,文献DOI怎么找? 2509118
邀请新用户注册赠送积分活动 1485206
关于科研通互助平台的介绍 1456237