Direct simulation and machine learning structure identification unravel soft martensitic transformation and twinning dynamics

无扩散变换 晶体孪晶 马氏体 偏斜 成核 相变 材料科学 统计物理学 分子动力学 凝聚态物理 化学物理 结晶学 物理 热力学 液晶 化学 计算化学 微观结构 冶金
作者
Jun‐ichi Fukuda,Kazuaki Z. Takahashi
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (50)
标识
DOI:10.1073/pnas.2412476121
摘要

Phase transition between ordered phases has garnered attention from the viewpoint of materials science as well as statistical physics. One interesting example is martensitic transformation and the resulting formation of twin structures, in which atoms or molecules that form one crystalline phase move in a concerted and diffusionless manner toward another crystalline phase. Recently martensitic transformation has been observed experimentally also in various soft materials. However, the complex internal structures involving many molecules have eluded direct investigation of the dynamical processes of martensitic transformation. Here, we carry out a direct simulation of mesoscale structural transition of a liquid crystalline blue phase (BP) of cubic symmetry, known as BP II. The dynamics is simulated by a Langevin-type equation for the orientational order parameter with thermal fluctuations. We demonstrate that machine-learning-aided analysis of local structures successfully unravels the transformation process from a perfect lattice of BP II to a twinned lattice of another BP (BP I). The nucleation of BP I is initiated by the breakup of junctions of line defects (disclinations), followed by the deformation of disclination network. We further show that twinned BP I is reversibly transformed to a perfect lattice of BP II by temperature variation. Order-parameter-based simulations with machine-learning-aided local structure identification provide valuable insights into not only the martensitic transformation of soft materials but also a wider class of complex structural transitions between ordered phases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sicecream完成签到,获得积分10
1秒前
无辜的蜗牛完成签到 ,获得积分10
1秒前
领导范儿应助不忘初心采纳,获得10
3秒前
落后珍完成签到,获得积分10
3秒前
3秒前
EtanJ完成签到,获得积分10
3秒前
jhih完成签到,获得积分10
4秒前
情怀应助五柳学生采纳,获得30
7秒前
yuqinghui98发布了新的文献求助10
8秒前
小二郎应助伶俐的幼晴采纳,获得10
9秒前
睡懒觉的啊眠完成签到 ,获得积分10
9秒前
执着的日记本完成签到,获得积分10
12秒前
单薄的静丹完成签到,获得积分10
13秒前
不忘初心完成签到,获得积分10
13秒前
vampire发布了新的文献求助20
13秒前
和谐煜祺完成签到,获得积分10
14秒前
15秒前
16秒前
Aki发布了新的文献求助10
18秒前
18秒前
纯真的诗兰完成签到,获得积分10
19秒前
20秒前
21秒前
顾矜应助朴实伯云采纳,获得10
21秒前
yy发布了新的文献求助10
22秒前
负数完成签到,获得积分10
23秒前
Rainfallen9发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
23秒前
独行者完成签到,获得积分10
24秒前
25秒前
26秒前
28秒前
28秒前
斯文败类应助Aki采纳,获得10
28秒前
和谐煜祺发布了新的文献求助10
30秒前
完美世界应助顶级科学家采纳,获得10
30秒前
852应助kk不k采纳,获得10
30秒前
zzt发布了新的文献求助50
30秒前
32秒前
Lily发布了新的文献求助10
32秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3866115
求助须知:如何正确求助?哪些是违规求助? 3408685
关于积分的说明 10659372
捐赠科研通 3132903
什么是DOI,文献DOI怎么找? 1727844
邀请新用户注册赠送积分活动 832501
科研通“疑难数据库(出版商)”最低求助积分说明 780298