Managing risks in supplier selection and order allocation

选择(遗传算法) 订单(交换) 业务 供应商关系管理 运营管理 运筹学 风险分析(工程) 微观经济学 计算机科学 营销 经济 供应链管理 供应链 财务 数学 人工智能
作者
Gaia Vitrano,Guido J.L. Micheli,Giuseppe Pacifico,Jacopo Rauccio,Donato Masi
出处
期刊:Management Decision [Emerald Publishing Limited]
卷期号:63 (13): 397-435
标识
DOI:10.1108/md-04-2024-0734
摘要

Purpose Supplier Selection (SS) and Order Allocation (OA) are strategic procurement processes crucial for mitigating supply chain uncertainties and potentially becoming a competitive advantage for companies in the mitigation strategies. Most of the previous studies dealing with SS and OA focused on straight rebuy situations, while there is a limited number of studies focusing on modified rebuy and new task situations, where uncertainty is higher, and comparison between historical and new suppliers is needed in a world, where the demand for new, technologically advanced products and services keeps increasing, pushing companies to continuously search for new suppliers. Design/methodology/approach Considering this gap, this paper aims to propose a Multiple-Criteria Decision-Making (MCDM) model to compare new and historical suppliers, with limited knowledge about the new suppliers, using measurable and forecastable decision criteria through a scenario planning approach that considers decision-makers’ different risk attitudes in evaluating suppliers’ performance. The proposed model adopts the Best-Worst Method and a two-stage Linear Programming model. The effectiveness of the model has been tested in a real industrial setting. Findings This model would support companies in their decision-making process to anticipate and address potential risks inherent in SS and OA decisions, thus enhancing supply chain resilience and agility in dynamic market environments. Originality/value The proposed model, requiring minimal computational resources, is accessible to a broad range of companies. It fills a literature gap by enabling comparison between new and historical suppliers in modified rebuy and new task situations, where uncertainty is higher, thereby enhancing supply chain decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Snoopy发布了新的文献求助10
1秒前
读书高完成签到,获得积分10
2秒前
明越完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
科研通AI5应助新的旅程采纳,获得10
7秒前
8秒前
9秒前
Sue发布了新的文献求助10
9秒前
陆林北完成签到,获得积分10
9秒前
YH发布了新的文献求助10
9秒前
陆林北发布了新的文献求助10
12秒前
13秒前
传奇3应助YH采纳,获得10
13秒前
oyc完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
热心晓丝发布了新的文献求助10
14秒前
Ava应助Snoopy采纳,获得10
17秒前
18秒前
19秒前
chencchen完成签到,获得积分10
21秒前
王讯完成签到,获得积分10
23秒前
LIANG发布了新的文献求助10
23秒前
Vegeta发布了新的文献求助10
23秒前
小晟完成签到,获得积分10
24秒前
YaoHui完成签到,获得积分10
24秒前
26秒前
量子星尘发布了新的文献求助50
27秒前
华仔应助N型半导体采纳,获得10
28秒前
111完成签到,获得积分10
31秒前
晴天发布了新的文献求助10
31秒前
LIANG完成签到,获得积分10
32秒前
SciGPT应助热心晓丝采纳,获得10
33秒前
N_wh完成签到,获得积分10
34秒前
MchemG应助集怀仁圣序采纳,获得30
36秒前
38秒前
非而者厚应助jlwang采纳,获得200
39秒前
龙骑士25发布了新的文献求助10
40秒前
小羊完成签到,获得积分10
42秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4240179
求助须知:如何正确求助?哪些是违规求助? 3773896
关于积分的说明 11851811
捐赠科研通 3429378
什么是DOI,文献DOI怎么找? 1882154
邀请新用户注册赠送积分活动 934159
科研通“疑难数据库(出版商)”最低求助积分说明 840814