已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Gen-Opt: A Deep Generative Model Framework for Evaluating and Optimizing Marketing Strategies in Dynamic Business Environments

作者
Chun Ling Xiao,Zhonghao Liang,Junfeng Yao,Yuxi Zhang
出处
期刊:Journal of Circuits, Systems, and Computers [World Scientific]
标识
DOI:10.1142/s0218126626500131
摘要

With the increasing intensity of market competition, businesses are continuously demanding optimization of their marketing strategies. Traditional methods for evaluating marketing strategies face challenges such as difficulty in real-time adjustments and an inability to accurately simulate complex customer behaviors. We propose a framework for evaluating and optimizing marketing strategy effectiveness based on deep generative models — Gen-Opt. This framework combines Generative Adversarial Networks (GANs), Variational Autoencoders (VAE), and the Autoformer time series prediction model to effectively capture customer behavior patterns, forecast sales trends, and simulate the potential response to marketing strategies. Through experiments on two publicly available datasets, Rossmann Store Sales and Retail Sales Forecasting, the Gen-Opt model outperforms traditional methods and existing mainstream models on various performance metrics. Specifically, on the Rossmann Store Sales dataset, Gen-Opt achieves MSE and RMSE values of 0.345 and 0.587, respectively, while on the Retail Sales Forecasting dataset, the MSE and RMSE are 0.278 and 0.528, showing improvements of approximately 15–30% over existing methods. The ablation experiment results show that GANs, VAE, and Autoformer modules effectively improve the model’s prediction accuracy and generalization ability, with the removal of any one of these modules significantly degrading model performance. Overall, the Gen-Opt model presented in the paper provides a new approach for optimizing marketing strategies, effectively addressing the limitations of traditional methods and providing more precise and dynamic support for business decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悄悄完成签到 ,获得积分10
刚刚
敞敞亮亮完成签到 ,获得积分10
刚刚
Shyee完成签到 ,获得积分0
刚刚
瑞rui完成签到 ,获得积分10
1秒前
十七完成签到 ,获得积分10
1秒前
ZLN666完成签到 ,获得积分10
1秒前
RY发布了新的文献求助10
2秒前
张俊扬发布了新的文献求助10
2秒前
2秒前
FODCOC完成签到,获得积分10
2秒前
nnnnn完成签到 ,获得积分10
2秒前
小龙完成签到 ,获得积分10
2秒前
SY完成签到,获得积分10
3秒前
3秒前
Kunning完成签到 ,获得积分10
3秒前
jtksbf完成签到 ,获得积分10
4秒前
4秒前
文明8完成签到,获得积分10
4秒前
Charles完成签到,获得积分0
4秒前
RMY完成签到 ,获得积分10
5秒前
考博圣体完成签到 ,获得积分10
5秒前
AAA建材批发原哥完成签到,获得积分10
6秒前
子凡完成签到 ,获得积分10
6秒前
HuanChen完成签到 ,获得积分10
7秒前
张俊扬完成签到,获得积分10
7秒前
xxx发布了新的文献求助10
7秒前
DZ完成签到,获得积分10
7秒前
西瓜刀完成签到 ,获得积分10
7秒前
温暖的炒饭完成签到 ,获得积分10
8秒前
SY发布了新的文献求助10
9秒前
9秒前
西瓜完成签到 ,获得积分10
10秒前
zhouxu完成签到,获得积分10
10秒前
yvette完成签到,获得积分10
10秒前
11秒前
冷傲的小土豆完成签到,获得积分10
11秒前
在水一方应助张俊扬采纳,获得10
11秒前
RY完成签到,获得积分10
11秒前
11秒前
Yasong完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458656
求助须知:如何正确求助?哪些是违规求助? 4564689
关于积分的说明 14296452
捐赠科研通 4489716
什么是DOI,文献DOI怎么找? 2459274
邀请新用户注册赠送积分活动 1448992
关于科研通互助平台的介绍 1424502

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10