电容感应
灵敏度(控制系统)
材料科学
鉴定(生物学)
线性范围
航程(航空)
光电子学
生物医学工程
复合材料
电子工程
工程类
电气工程
化学
生物
色谱法
检出限
植物
作者
Yimin Ruan,Liang Liang
标识
DOI:10.1002/admt.202501511
摘要
Abstract Traditional flexible capacitive sensors struggle to balance high sensitivity with a wide linear range due to the lack of a biomimetic hierarchical structure in their single‐scale microstructures. Inspired by the gradient microstructures of human skin, particularly the microfolds of the basement membrane and the interlaced papillae of the dermis‐epidermis junction, this paper proposes a multi‐scale microstructure capacitive sensor that combines ultraviolet picosecond laser‐induced graphene electrodes with an ordered‐disordered dielectric layer design. The sensor achieves high sensitivity and wide linear range (0–500 kPa) across the entire pressure range through a dual mechanism: sandpaper‐replicated random fractal roughness induces multi‐point stress concentration, simulating the amplification effect of skin micro‐wrinkles; and dual‐height micro‐protrusions with a stepped compression structure enable capacitive relay control. The sensor features ultra‐fast response/recovery capability (50 ms), 27 500‐cycle stability, and a microforce detection limit of 0.81 g. Combined with a multilayer perceptron (MLP)‐based machine learning model, the platform achieves 98.8% accuracy in hardness recognition across six materials spanning from sponge to titanium alloy, advancing robotic tactile perception toward human‐level cognition.
科研通智能强力驱动
Strongly Powered by AbleSci AI