Advancing Universal Deep Learning for Electronic-Structure Hamiltonian Prediction of Materials

哈密顿量(控制论) 深度学习 人工智能 计算机科学 数学 数学优化
作者
Yin Shi,Zujian Dai,Xinyang Pan,Lixin He
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2509.19877
摘要

Deep learning methods for electronic-structure Hamiltonian prediction has offered significant computational efficiency advantages over traditional DFT methods, yet the diversity of atomic types, structural patterns, and the high-dimensional complexity of Hamiltonians pose substantial challenges to the generalization performance. In this work, we contribute on both the methodology and dataset sides to advance universal deep learning paradigm for Hamiltonian prediction. On the method side, we propose NextHAM, a neural E(3)-symmetry and expressive correction method for efficient and generalizable materials electronic-structure Hamiltonian prediction. First, we introduce the zeroth-step Hamiltonians, which can be efficiently constructed by the initial charge density of DFT, as informative descriptors of neural regression model in the input level and initial estimates of the target Hamiltonian in the output level, so that the regression model directly predicts the correction terms to the target ground truths, thereby significantly simplifying the input-output mapping for learning. Second, we present a neural Transformer architecture with strict E(3)-Symmetry and high non-linear expressiveness for Hamiltonian prediction. Third, we propose a novel training objective to ensure the accuracy performance of Hamiltonians in both real space and reciprocal space, preventing error amplification and the occurrence of "ghost states" caused by the large condition number of the overlap matrix. On the dataset side, we curate a high-quality broad-coverage large benchmark, namely Materials-HAM-SOC, comprising 17,000 material structures spanning 68 elements from six rows of the periodic table and explicitly incorporating SOC effects. Experimental results on Materials-HAM-SOC demonstrate that NextHAM achieves excellent accuracy and efficiency in predicting Hamiltonians and band structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
corner发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助150
3秒前
3秒前
4秒前
4秒前
CipherSage应助jacob258采纳,获得10
4秒前
图苏完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
浮游应助秃头小宝贝采纳,获得10
9秒前
123发布了新的文献求助10
9秒前
文右三发布了新的文献求助10
9秒前
望星空完成签到,获得积分10
9秒前
10秒前
共享精神应助森森采纳,获得10
10秒前
yao完成签到,获得积分10
10秒前
11秒前
12秒前
没有昵称完成签到 ,获得积分10
12秒前
13秒前
嘤嘤怪发布了新的文献求助10
13秒前
科研通AI5应助cc采纳,获得10
13秒前
14秒前
朱厚璁发布了新的文献求助10
15秒前
15秒前
17秒前
17秒前
星辰大海应助艺术家采纳,获得10
18秒前
大模型应助科研小黑采纳,获得10
19秒前
19秒前
英吉利25发布了新的文献求助10
20秒前
是苗苗丫完成签到,获得积分10
20秒前
21秒前
21秒前
今夜小楼一曲完成签到,获得积分10
21秒前
莫言发布了新的文献求助30
22秒前
酷波er应助蓝海湾采纳,获得10
22秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062428
求助须知:如何正确求助?哪些是违规求助? 4286268
关于积分的说明 13356749
捐赠科研通 4104095
什么是DOI,文献DOI怎么找? 2247300
邀请新用户注册赠送积分活动 1252893
关于科研通互助平台的介绍 1183800