Polarimetric binocular three-dimensional imaging in turbid water with multi-feature self-supervised learning

特征(语言学) 旋光法 人工智能 计算机科学 计算机视觉 遥感 模式识别(心理学) 地质学 光学 物理 散射 哲学 语言学
作者
Linghao Shen,Liping Zhang,Pengfei Qi,Xun Zhang,Xiaobo Li,Yizhao Huang,Yongqiang Zhao,Haofeng Hu
出处
期刊:PhotoniX [Springer Nature]
卷期号:6 (1)
标识
DOI:10.1186/s43074-025-00185-4
摘要

Abstract Polarization imaging provides significant advantages in underwater environments. However, existing polarization underwater imaging methods primarily focus on leveraging polarization information to suppress the scattering effect to achieve the clear vision, while neglecting other valuable information contained in polarization images, such as the scene depth and the polarization characteristics of the objects. This paper proposes a self-supervised three-dimensional underwater imaging method based on a polarization binocular imager. In addition to improving image quality in turbid water based on polarization imaging, the proposed method merges features from both the enhanced binocular images recovered from polarization information and the feature-rich degree of polarization images into the self-supervised framework to estimate disparities of the scene, achieving high-quality reconstruction of underwater scene depth. We then design multiple self-supervised losses that effectively integrate depth information obtained from both binocular imaging and polarization imaging to guide the learning process. Meanwhile, the proposed method can recover the polarization information of the objects in turbid water, thus enhancing the perception of target properties such as the materials of the objects. Both the simulated experiment and the real-world experiments in the sea demonstrate the effectiveness and superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nicole完成签到 ,获得积分10
2秒前
花花花花发布了新的文献求助10
2秒前
theverve发布了新的文献求助10
2秒前
田様应助一碗鱼采纳,获得10
5秒前
7秒前
7秒前
7秒前
8秒前
Akim应助Don采纳,获得10
8秒前
yuhomie完成签到,获得积分10
8秒前
小白在努力完成签到,获得积分10
9秒前
theverve完成签到,获得积分10
9秒前
xx完成签到,获得积分20
10秒前
10秒前
佟蓝血发布了新的文献求助10
11秒前
huang发布了新的文献求助10
11秒前
唯雷发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
111111发布了新的文献求助20
13秒前
Forever发布了新的文献求助10
13秒前
欣欣发布了新的文献求助10
13秒前
NexusExplorer应助科研通管家采纳,获得30
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
小马甲应助科研通管家采纳,获得30
14秒前
Ava应助科研通管家采纳,获得10
14秒前
标致天思完成签到,获得积分10
14秒前
zhangfugui应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
15秒前
无极微光应助科研通管家采纳,获得20
15秒前
浮游应助科研通管家采纳,获得10
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480459
求助须知:如何正确求助?哪些是违规求助? 4581607
关于积分的说明 14381381
捐赠科研通 4510179
什么是DOI,文献DOI怎么找? 2471686
邀请新用户注册赠送积分活动 1458093
关于科研通互助平台的介绍 1431812