Effect of laser shock processing on residual stress evolution in martensitic stainless steel multi-pass butt-welded joints

残余应力 材料科学 焊接 休克(循环) 马氏体 复合材料 极限抗拉强度 压力(语言学) 对焊 马氏体不锈钢 冶金 微观结构 语言学 医学 内科学 哲学
作者
Li Li,Shudong Guo,Yanhui Guo,Jingzhong Ren,Wenbin Hou,Xigang Wang,Jia Lu,Nannan Zhang,Hongyan Gan
出处
期刊:Materials research express [IOP Publishing]
卷期号:10 (3): 034003-034003 被引量:5
标识
DOI:10.1088/2053-1591/acc63c
摘要

Abstract Laser shock processing (LSP) is an innovative approach, which effectively improves the mechanical behavior of metallic structures by introducing compressive residual stress. To evaluate the residual stress evolution in low-carbon 13Cr4Ni martensitic stainless steel multi-pass butt-welded joints induced by LSP, a two-step numerical simulation including welding analysis, at first, followed by LSP calculation with the simulated welding stress results being taken into account, was performed based on ABAQUS software. Effects of LSP parameters such as power density, spot size, overlapping rate and numbers of laser shock on the residual stress variations, were systematically investigated. To validate the reliability and accuracy of the numerical simulation, experiments of welding and LSP were conducted in sequence. The residual stress after welding and LSP were investigated by x-ray diffraction method. Results demonstrate that the simulated results show a good agreement with the experimental datas. The welding residual stress distribution is uneven. Larger tensile stresses appear on the weld surface and its adjacent heat-affected zone, which could be converted into high-level compressive stress after LSP. Furthermore, an ideal residual stress field can be obtained after two successive laser shocks with an overlap rate of 75% when the power density, spot diameter, and pulse width are 7.6 GW cm −2 , 4 mm, and 25 ns, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
归尘发布了新的文献求助10
1秒前
刘忙完成签到,获得积分10
1秒前
JamesPei应助zxzxzxzxzx采纳,获得10
1秒前
1秒前
DX120210165完成签到,获得积分10
2秒前
2秒前
Jasper应助Iridesent0v0采纳,获得10
3秒前
3秒前
嘉嘉完成签到 ,获得积分10
3秒前
3秒前
Ava应助阔达的惠采纳,获得10
3秒前
脑洞疼应助mhb115采纳,获得10
4秒前
4秒前
4秒前
5秒前
浅笑完成签到,获得积分10
5秒前
wxh关闭了wxh文献求助
6秒前
6秒前
刻苦的鸵鸟完成签到,获得积分10
6秒前
6秒前
687发布了新的文献求助10
6秒前
硕心发布了新的文献求助10
6秒前
华仔应助laola采纳,获得10
6秒前
kkk完成签到 ,获得积分10
7秒前
7秒前
oooo发布了新的文献求助10
7秒前
7秒前
iwonder发布了新的文献求助10
8秒前
秀丽念露完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
祈安*发布了新的文献求助10
8秒前
xinyuxxx发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
123zyx发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5654815
求助须知:如何正确求助?哪些是违规求助? 4795608
关于积分的说明 15070611
捐赠科研通 4813367
什么是DOI,文献DOI怎么找? 2575101
邀请新用户注册赠送积分活动 1530574
关于科研通互助平台的介绍 1489178