Uncertainty‐guided multitask semi‐supervised network for the multi‐organ segmentation of breast cancer CBCT

乳腺癌 分割 医学影像学 人工智能 医学物理学 计算机科学 癌症 医学 放射科 计算机视觉 内科学
作者
Ziyi Wang,Wei Sun,Heng Zhang,Nannan Cao,Jiangyi Ding,Jun Sun,Kai Xie,Liugang Gao,Xinye Ni
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17728
摘要

Abstract Background The delineation of organs at risk (OARs) and clinical target volume (CTV) is an important step in adaptive radiotherapy (ART). Cone‐beam computed tomography (CBCT) images are easy to obtain in radiotherapy (RT). Objectives This study aims to develop an effective CBCT‐guided delineation method for breast cancer ART. Methods A total of 60 planning CT images and 330 CBCT images from 60 patients with breast cancer who underwent breast‐conserving surgery were used to develop uncertainty‐guided multitask semi‐supervised network (UGMNet), which is guided by model segmentation uncertainty and uses intra‐task consistency learning to effectively utilize unlabeled data. Branch networks were added to take advantage of the region‐level shape constraints and bounding‐level distance information of the data. UGMNet was trained with 20% labeled data and a large amount of unlabeled data to obtain the generalized segmentation model (Ours‐G). The planning CT image of each patient was then inputted to the generalized model for fine‐tuning to establish a personal segmentation model (Ours‐P). We compared Ours‐G and Ours‐P with three classical semi‐supervised methods, uncertainty aware mean teacher (UA‐MT), dual‐task consistency network (DTC), and mutual consistency network (MC‐Net+). Results Compared with other semi‐supervised segmentation model, our proposed method achieved better or equivalent segmentation performance under the same backbone network (3D VNet) and task setting. For CTV delineation, the mean Dice similarity coefficient (DSC) of UA‐MT, DTC, MC‐Net+, Ours‐G, and Ours‐P were 0.84, 0.80, 0.60, 0.84, and 0.87, respectively. For the heart, the mean DSC values were 0.82, 0.85, 0.72, 0.86, and 0.89, respectively. For the left lung, the mean DSC values were 0.92, 0.93, 0.91, 0.94, and 0.92, respectively. For the right lung, the mean DSC values were 0.96, 0.94, 0.93, 0.97, and 0.96, respectively. For the spinal cord, the mean DSC values were 0.73, 0.72, 0.77, 0.80, and 0.80, respectively. Conclusions The proposed method realizes effective delineation for CBCT‐guided ART using a small amount of labeled data and improves the segmentation accuracy of CTV and OARs on CBCT images using personalized modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
国足预备员完成签到 ,获得积分10
1秒前
HopeStar发布了新的文献求助10
1秒前
kelvin发布了新的文献求助10
2秒前
自然的霸完成签到,获得积分10
3秒前
daniel完成签到,获得积分10
5秒前
6秒前
hjh发布了新的文献求助10
6秒前
秋风暖暖完成签到,获得积分0
7秒前
7秒前
龙共完成签到,获得积分10
7秒前
9秒前
年轻元冬完成签到,获得积分10
10秒前
药石无医发布了新的文献求助10
11秒前
Lucas应助远荒采纳,获得10
12秒前
12秒前
柔弱板栗完成签到,获得积分20
12秒前
秋风暖暖发布了新的文献求助10
13秒前
13秒前
yvonnecao完成签到,获得积分10
14秒前
研友_VZG7GZ应助白菜香猪采纳,获得10
15秒前
赵科翊完成签到,获得积分10
15秒前
柔弱板栗发布了新的文献求助10
16秒前
17秒前
英俊的铭应助1234采纳,获得10
18秒前
lllyyy完成签到,获得积分10
18秒前
赛猪完成签到,获得积分10
19秒前
ZW完成签到 ,获得积分10
19秒前
枯草芽孢完成签到 ,获得积分10
19秒前
zyzraylene完成签到,获得积分10
20秒前
20秒前
小二郎应助金不换采纳,获得10
20秒前
姜睿思发布了新的文献求助10
21秒前
22秒前
平常化蛹完成签到,获得积分10
23秒前
糊涂的元珊完成签到 ,获得积分10
23秒前
drtianyunhong完成签到,获得积分10
25秒前
26秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Pediatric Injectable Drugs 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4450392
求助须知:如何正确求助?哪些是违规求助? 3918315
关于积分的说明 12161985
捐赠科研通 3568216
什么是DOI,文献DOI怎么找? 1959430
邀请新用户注册赠送积分活动 998797
科研通“疑难数据库(出版商)”最低求助积分说明 893880